Eco-Friendly Bioremediation of Textile Azo Dyes Using Microbial Consortia with Phytotoxicity Assessment

  • Rekha Anantharaman Centre for Global Health Research, Department of Obstetrics and Gynaecology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India https://orcid.org/0009-0009-9956-8803
  • Rajakumar Govindasamy Centre for Nanobioscience, Department of Orthodontics, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105,Tamil Nadu, India https://orcid.org/0000-0002-5388-5813

Abstract

Textile dyeing effluents and in particular, azo dyes are regarded to be among the most recalcitrant environmental pollutants, due to their extremely complex aromatic nature and/or lack of biodegradability. The effluent sample have been taken and identified four bacterial isolates including Bacillus sp., Staphylococcus sp., Vibrio cholerae and Vibrio parahaemolyticus characterised morphologically and biochemically. The most effective bacteria in dye removal were Staphylococcus sp. (89%), against direct dyes contaminated wastewater, and Bacillus sp. (74%) against azo dye-contaminated wastewater among them. The optimization studies revealed the best carbon source to be lactose and sodium nitrate being the best nitrogen source and that the one-factor-at-a-time optimization study revealed the optimum pH to be 7.5 at 35oC -40oC. FTIR analysis also indicated that certain changes must have occurred in structure of the dye molecules after biodegradation giving indication that detoxification has occurred successfully. The results of the phytotoxicity performed on seven different crop species showed that effluents were subjected to treatment with a bacterial consortium had no significant effects on seed germination or root-shoot growth compared to a control as compared to a marked inhibitory effect of untreated effluents on their seed germination and root-shoot development. This study significantly affirms the elimination of textile dye effluents through an intensive multi-crop phytotoxicity screening, demonstrating restoration of seed germination and the effective growth after bacterial consortium treatment.

Keywords: Azo Dye, Bioremediation, Decolorization, FTIR, Microbial Consortia, Phytotoxicity

Downloads

Download data is not yet available.

References

Afrin, S., Shuvo, H. R., Sultana, B., Islam, F., Rus'd, A. A., Begum, S., & Hossain, M. N. (2021). The degradation of textile industry dyes using the effective bacterial consortium. Heliyon, 7(10), e08102. https://doi.org/10.1016/j.heliyon.2021.e08102
Ajaz, M., Ali, E., Bukhari, D. A., Wadood, H. Z., Shafiq, S., Hussain, S. Z., & Rehman, A. (2024). Evaluation of azo dyes degradation potential of Staphylococcus strains: A strategy for dye-waste management. Current Research in Green and Sustainable Chemistry, 9, 100432. https://doi.org/10.1016/j.crgsc.2024.100432
American Public Health Association (APHA) (1926). Standard Methods for The Examination of Water and Wastewater (Vol. 6). American Public Health Association.
Ansari, A., Hussain, K., Aman, A., Naveed, T., & Haider, M. S. (2025). Treatment of synthetic textile sewage containing anthraquinone and azo based disperse dyes using bacterial consortium. International Journal of Environmental Science and Technology, 22(15), 15577-15591. https://doi.org/10.1007/s13762-025-06649-1
Armalina, Y., Azizah, Z., & Asra, R. (2020). The Degradation Rates of Natural Dyes from Natural Resources: A Review. Asian Journal of Pharmaceutical Research and Development, 8(5), 75–81. https://doi.org/10.22270/ajprd.v8i5.827
Ayub, A., Wani, A. K., Chopra, C., Sharma, D. K., Amin, O., Wani, A. W., Singh, A., Manzoor, S., & Singh, R. (2025). Advancing Dye Degradation: Integrating Microbial Metabolism, Photocatalysis, and Nanotechnology for Eco-Friendly Solutions. Bacteria, 4(1), 15. https://doi.org/10.3390/bacteria4010015
Azanaw, A., Birlie, B., Teshome, B., & Jemberie, M. (2022). Textile effluent treatment methods and eco-friendly resolution of textile wastewater. Case Studies in Chemical and Environmental Engineering, 6, 100230. https://doi.org/10.1016/j.cscee.2022.100230
Bandary, B., Hussain, Z., & Kumar, R. (2016). Effect of carbon and nitrogen sources on Escherichia coli bacteria in removing dyes. Materials Today: Proceedings, 3(10), 4023-4028. https://doi.org/10.1016/j.matpr.2016.11.067
Benkhaya, Benkhaya, El Harfi, S., & El Harfi, A. (2017). Classifications, properties and applications of textile dyes: A review. Applied Journal of Environmental Engineering Science, 3(3), Appl.00000J. Envir. Eng. Sci. 3 N°3(2017) 311–320. https://doi.org/10.48422/IMIST.PRSM/ajees-v3i3.9681
Bergey, D. H. (1994). Bergey's manual of determinative bacteriology. Lippincott Williams & Wilkins.
Bhatia, D., Sharma, N.R., Singh, J. and Kanwar, R.S., 2017. Biological methods for textile dye removal from wastewater: A review. Critical Reviews in Environmental Science and Technology, 47(19), pp.1836-1876. https://doi.org/10.1080/10643389.2017.1393263
Chockalingam, N., Banerjee, S., & Muruhan, S. (2019). Characterization of physicochemical parameters of textile effluents and its impacts on environment. Environment and Natural Resources Journal, 17(2), 41-53. https://doi.org/10.32526/ennrj.17.2.2019.11
Chung K. T. (2016). Azo dyes and human health: A review. Journal of environmental science and health. Part C, Environmental carcinogenesis & ecotoxicology reviews, 34(4), 233–261. https://doi.org/10.1080/10590501.2016.1236602
El-Sayed, E., Abd El-Aziz, E., Othman, H., & Hassabo, A. G. (2024). Azo dyes: Synthesis, classification and utilisation in textile industry. Egyptian Journal of Chemistry, 67(13), 87-97. https://doi.org/10.21608/ejchem.2024.257952.9057
Etminani, F., & Harighi, B. (2018). Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees. The plant pathology journal, 34(3), 208–217. https://doi.org/10.5423/PPJ.OA.07.2017.0158
Garg, S. K., & Tripathi, M. (2017). Microbial strategies for discoloration and detoxification of azo dyes from textile effluents. Research Journal of Microbiology, 12(1), 1-19. https://scialert.net/abstract/?doi=jm.2017.1.19
Göktaş, S. (2024). Synergic effects of pH, reaction temperature, and various light sources on the photodegradation of methylene blue without photocatalyst: a relatively high degradation efficiency. Chemistry Africa, .1-13. https://doi.org/10.1007/s42250-024-01036-8
Góralczyk-Bińkowska, A., Długoński, A., Bernat, P., Długoński, J., & Jasińska, A. (2021). Environmental and molecular approach to dye industry waste degradation by the ascomycete fungus Nectriella pironii. Scientific reports, 11(1), 23829. https://doi.org/10.1038/s41598-021-03446-x
Ingale, R. M., & Thorat, S. R. (2024). Strategies for Aerobic Decolorization and Detoxification of a Disperse Dye by an Isolate of Bacillus sp. Pertaining to its Possible Correlation with COD in Textile Effluent. Biosciences Biotechnology Research Asia, 21(2), 755. http://dx.doi.org/10.13005/bbra/3262
Karthikeyan, K., & Kanchana, D. (2014). Phytotoxicity analysis of untreated and bacterial consortium treated textile dye effluent. International Journal of Pharmaceutical and Biological Archives, 5(3), 172-175. https://ijpba.info/index.php/ijpba/article/view/1340/956 (accessed on 15th September 2025).
Nabi, G., Malik, N., & Raza, W. (2020). Degradation effect of temperature variation and dye loading g-C3N4 towards organic dyes. Inorganic Chemistry Communications, 119, 108050. https://doi.org/10.1016/j.inoche.2020.108050
Palanivelan, R., Rajakumar, S., & Ayyasamy, P. M. (2014). Effect of various carbon and nitrogen sources on decolorization of textile dye remazol golden yellow using bacterial species. Journal of Environmental Biology, 35(5), 781.
Paul, G. K., Mahmud, S., Naher, K., Jabin, T., Mahmud, M. L., Haque, M. N., ... & Saleh, M. A. (2020). Isolation and characterization of bacteria from two soil samples and their effect on wheat (Triticum aestivum L.) growth promotion. J. Adv. Biotechnol. Exp. Ther, 3(3), 254-62. https://doi.org/10.5455/jabet.2020.d132
Pinheiro, L. R. S., Gradíssimo, D. G., Xavier, L. P., & Santos, A. V. (2022). Degradation of azo dyes: bacterial potential for bioremediation. Sustainability, 14(3), 1510. https://doi.org/10.3390/su14031510
Pokharia, A., & Ahluwalia, S. S. (2016). Decolorization of xenobiotic azo dye-black WNN by immobilized Paenibacillus alvei MTCC 10625. Int J Environ Bioremed Biodegrad, 4, 35-46. https://doi.org/10.12691/ijebb-4-2-2
Prasad, A. A., Satyanarayana, V. S. V., & Rao, K. B. (2013). Biotransformation of Direct Blue 1 by a moderately halophilic bacterium Marinobacter sp. strain HBRA and toxicity assessment of degraded metabolites. Journal of hazardous materials, 262, 674-684. https://doi.org/10.1016/j.jhazmat.2013.09.011
Rekha, A., Srinivasan, L., Pavithra, S., Gomathi, T., Sudha, P. N., Lavanya, G., ... & Vidhya, A. (2025). Biosorption efficacy studies of Sargassum wightii and its biochar on the removal of chromium from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 166, 105241. https://doi.org/10.1016/j.jtice.2023.105241
Revathi, N., Raja, J. D., Rajesh, J., & Sankarganesh, M. (2023). Recent Techniques in Dye Degradation: A Biological Approach. In Advances in Dye Degradation: Volume 1 (pp. 167-186). Bentham Science Publishers. https://doi.org/10.2174/9789815179545123010011
Rima, S. A. J., Paul, G. K., Islam, S., Akhtar-E-Ekram, M., Zaman, S., Saleh, M. A., & Uddin, M. S. (2022). Efficacy of Pseudomonas sp. and Bacillus sp. in textile dye degradation: a combined study on molecular identification, growth optimization, and comparative degradation. Journal of Hazardous Materials Letters, 3, 100068. https://doi.org/10.1016/j.hazl.2022.100068
Sakpal, S. B., & Tarfe, K. S. (2021). Screening, Isolation and Characterization of dye degrading bacteria from textile dye effluents. BioRxiv, 2021-12. https://doi.org/10.1101/2021.12.20.473465
Saranraj, P. (2025). Innovative Approaches to Enhance Low-Density Polyethylene (LDPE) Biodegradation using Pleurotus ostreatus. International Journal of Advanced Science and Engineering. 11(3):4362 – 4373. https://doi.org/10.29294/IJASE.11.3.2025.4362-4373
Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S. P. (2011). Bacterial decolorization and degradation of azo dyes: a review. Journal of the Taiwan institute of Chemical Engineers, 42(1), 138-157. https://doi.org/10.1016/j.jtice.2010.06.006
Senthilvelan, T., Kanagaraj, J. & Panda, R.C. Enzyme-Mediated Bacterial Biodegradation of an Azo Dye (C.I. Acid Blue 113): Reuse of Treated Dye Wastewater in Post-Tanning Operations. Appl Biochem Biotechnol 174, 2131–2152 (2014). https://doi.org/10.1007/s12010-014-1158-x
Shafqat, M., Khalid, A., Mahmood, T., Siddique, M. T., Han, J. I., & Habteselassie, M. Y. (2017). Evaluation of bacteria isolated from textile wastewater and rhizosphere to simultaneously degrade azo dyes and promote plant growth. Journal of Chemical Technology & Biotechnology, 92(10), 2760-2768. https://doi.org/10.1002/jctb.5357.
Shankarling, G. S., Deshmukh, P. P., & Joglekar, A. R. (2017). Process intensification in azo dyes. Journal of Environmental Chemical Engineering, 5(4), 3302-3308. https://doi.org/10.1016/j.jece.2017.05.057
Sharma, P., Monisha, B., Kumar, P. S., Krishnaswamy, V. G., & Rangasamy, G. (2024). Effective removal of toxic mixed azo dyes and Cr (VI) ions from wastewater using an integrated approach. Desalination and Water Treatment, 320, 100654. https://doi.org/10.1016/j.dwt.2024.100654
Sigamani, S., Chinnasamy, R., Sathiyamoorthy, T., Narayanasamy, M., Nagarajan, S., Ramamurthy, D., & Natarajan, H. (2024). Eco-friendly biodegradation of synthetic dyes using algae and its toxicological assessment on Clarias gariepinus. Biomass Conversion and Biorefinery, 14(16), 19835-19848. https://doi.org/10.1007/s13399-023-04208-7
Singh, G. B., Vinayak, A., Mudgal, G., & Kesari, K. K. (2024). Azo dye bioremediation: An interdisciplinary path to sustainable fashion. Environmental Technology & Innovation, 36, 103832. https://doi.org/10.1016/j.eti.2024.103832
Solís, M., Solís, A., Pérez, H. I., Manjarrez, N., & Flores, M. (2012). Microbial decolouration of azo dyes: a review. Process Biochemistry, 47(12), 1723-1748. https://doi.org/10.1016/j.procbio.2012.08.014
Sun, J., Jin, J., Beger, R. D., Cerniglia, C. E., & Chen, H. (2017). Evaluation of metabolism of azo dyes and their effects on Staphylococcus aureus metabolome. Journal of industrial microbiology and biotechnology, 44(10), 1471-1481. https://doi.org/10.1007/s10295-017-1970-8
Taylor, R. H., Allen, M. J., & Geldreich, E. E. (1983). Standard plate count: a comparison of pour plate and spread plate methods. Journal‐American Water Works Association, 75(1), 35-37. https://doi.org/10.1002/j.1551-8833.1983.tb05055.xDigital Object Identifier (DOI)
Thiruppathi, K., Rangasamy, K., Ramasamy, M., & Muthu, D. (2021). Evaluation of textile dye degrading potential of ligninolytic bacterial consortia. Environmental Challenges, 4, 100078. https://doi.org/10.1016/j.envc.2021.100078
Ullah Khan, A., Zahoor, M., Ur Rehman, M., Ikram, M., Zhu, D., Naveed Umar, M., ... & Ali, E. A. (2023). Bioremediation of azo dye brown 703 by Pseudomonas aeruginosa: an effective treatment technique for dye-polluted wastewater. Microbiology Research, 14(3), 1049-1066.
https://doi.org/10.3390/microbiolres14030070
Varshan, G. A., Namasivayam, S. K. R., Viswanathan, S., R, S., & Vellaiammal, C. S. (2024). Screening of azo dye biosorption efficacy of free, immobilized, indigenous bacterial strains associated with azo dye contaminated river water—An in vitro study. Environmental Quality Management, 34(1), e22214. https://doi.org/10.1002/tqem.22214
Statistics
5 Views | 3 Downloads
How to Cite
Anantharaman, R., & Govindasamy, R. (2026). Eco-Friendly Bioremediation of Textile Azo Dyes Using Microbial Consortia with Phytotoxicity Assessment. International Journal of Advancement in Life Sciences Research, 9(1), 183-200. https://doi.org/https://doi.org/10.31632/ijalsr.2026.v09i01.014