Phytochemical Screening, Identification of Compounds, and Antioxidant Activity Test of Sirsak Extract (Annona muricata, L.) Leaf Grown in North Sumatra, Indonesia

Abstract

The research is to identify and analyze the secondary metabolite content of sirsak (Annona muricata, L.) leaves, which are extracted with ethanol and water solvents, and determine their potential activity as antioxidants. Extraction using ethanol (Merck) and water as solvent; phytochemical screening uses standard reagents: FeCl3 5% in water, FeCl3 1%, Dragendrof, Mayer, Wagner, Mg ribbon, HCl (concentrated), Liberman-Buchard. Analysis of secondary metabolite compound components from the extract using GC-MS Shimadzu (QP-2010S Shimadzu, Japan) and determination of potential antioxidant activity using the DPPH method. Phytochemical screening of the ethanol extract of A. muricata leaf contains phenolic secondary metabolites, flavonoids, saponins, tannins, alkaloids, and triterpenoids. According to phytochemical screening, A. muricata leaf water extract contains phenolic compounds, tannins, flavonoids, alkaloids, and steroids. The results of ethanol extract analysis using GC-MS obtained 24 types of secondary metabolite compounds with the three highest secondary metabolite compounds, namely dodecanoic acid, 1,2,3-propanetriyl ester (16.76%), dodecanoic acid, 1,2,3-propanetriyl esters (16.52%), and glycerol trilaurate (15.07%); A. muricata leaf water extract contains 15 metabolite compound components with the three highest secondary metabolite compounds, namely n-hexadecoic acid (37.40%), 9-Hexadecenoic acid (16.59%), and benzeneethanol, 4-hydroxy (6.76%). The antioxidant activity value extracted with water solvent has an IC50 of 99.96 ppm, and that extracted with ethanol has an IC50 of 264.51 ppm. A. muricata extract leaf contains various secondary metabolites, and samples extracted with water show better antioxidant activity compared to samples extracted with ethanol.

Keywords: Annona muricata, DPPH, GC-MS, Sirsak leaf, secondary metabolites

Downloads

Download data is not yet available.

References

Achi, N. K., & Ohaeri, O. C. (2015). GC-MS determination of bioactive constituents of the methanolic fractions of Cnidoscolus aconitifolius. British Journal of Pharmaceutical Research, 5(3), 163–172. http://doi.org/10.9734/BJPR/2015/13893
Albratty, M., Alhazmi, H. A., Meraya, A. M., Najmi, A., Alam, M. S., Rehman, Z., & Moni, S. S. (2021). Spectral analysis and Antibacterial activity of the bioactive principles of Sargassum tenerrimum J. Agardh collected from the Red sea, Jazan, Kingdom of Saudi Arabia. Brazilian Journal of Biology, 83, 1-110. http://doi.org/10.1590/1519-6984.249536
Astiti, N. P. A., & Ramona, Y. (2021). GC-MS analysis of active and applicable compounds in methanol extract of sweet star fruit (Averrhoa carambola L.) leaves. HAYATI Journal of Biosciences, 28(1), 12-12. http://doi.org/10.4308/hjb.28.1.12
Astudillo, A. M., Meana, C., Guijas, C., Pereira, L., Lebrero, P., Balboa, M. A., & Balsinde, J. (2018). Occurrence and biological activity of palmitoleic acid isomers in phagocytic cells. Journal of Lipid Research, 59(2), 237-249. http://doi.org/10.1194/jlr.M079145
Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R.P., Chang, C.M. 2022. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules. 27(4): 1326. http://doi.org/10.3390/molecules27041326
Bantho, S., Naidoo, Y., Dewir, Y. H., Bantho, A., & Murthy, H. N. (2022). Chemical Composition of Combretum erythrophyllum leaf and stem bark extracts. Horticulturae, 8(8), 1-16. http://doi.org/10.3390/horticulturae8080755
Ganesh, M., & Mohankumar, M. (2017). Extraction and identification of bioactive components in Sida cordata (Burm. f.) using gas chromatography–mass spectrometry. Journal of food science and technology, 54, 3082-3091. http://doi.org/10.1007/s13197-017-2744-z
Guan, G., & Lan, S. (2018). Implications of antioxidant systems in inflammatory bowel disease. BioMed research international, 2018. 1-7. http://doi.org/10.1155/2018/1290179
Guerrero, R. V., Vargas, R. A., & Petricevich, V. L. (2017). Chemical compounds and biological activity of an extract from bougainvillea x buttiana (var. rose) holttum and standl. International Journal of Pharmacy and Pharmaceutical Sciences, 9(3), 42-46. http://doi.org/10.22159/ijpps.2017v9i3.16190
Gulcin, İ. 2020. Antioxidants and Antioxidant Methods: An Updated Overview. Arch Toxicol. 94(3): 651–715. http://doi.org/10.1007/s00204-020-02689-3
Gurning, K., Haryadi, W. 2022. Potential Antioxidants of Secondary Metabolite Isolates Ethyl Acetate Fraction Coleus amboinicus Lour. Leaves. ScienceRise: Pharmaceutical Science. 39(5): 100–5. http://doi.org/10.15587/2519-4852.2022.266401
Gurning, K., Haryadi, W., Sastrohamidjojo, H. 2021. Isolation and Characterization of Antioxidant Compounds of Bangun-bangun (Coleus amboinicus, L.) leaves from North Sumatera, Indonesia. Rasayan J Chem. 14(1): 248–53. http://doi.org/10.31788/RJC.2021.1416077
Gurning, K., Simanjuntak, H. A., & Purba, H. (2020). Identification of the chemical compound of essential oil from ketumbar (Coriandrum sativum L.) leaves with GC-MS. Pharmacognosy Journal, 12(5), 1019–1023. http://doi.org/10.5530/pj.2020.12.144
Gurning, K., Simanjuntak, H. A., Purba, H., Situmorang, R. F. R., Barus, L., & Silaban, S. (2021, March). Determination of total tannins and antibacterial activities ethanol extraction seri (Muntingia calabura L.) leaves. In Journal of Physics: Conference Series (Vol. 1811, No. 1, p. 012121). IOP Publishing. http://doi.org/10.1088/1742-6596/1811/1/012121
Hadi, M. Y., Mohammed, G. J., & Hameed, I. H. (2016). Analysis of bioactive chemical compounds of Nigella sativa using gas chromatography-mass spectrometry. Journal of Pharmacognosy and Phytotherapy, 8(2), 8-24. http://doi.org/10.5897/JPP2015.0364
Hossen, K., Iwasaki, A., Suenaga, K., & Kato-Noguchi, H. (2021). Phytotoxicity of the novel compound 3-hydroxy-4-oxo-β-dehydroionol and compound 3-oxo-α-ionone from Albizia richardiana (Voigt.) King & Prain. Environmental Technology & Innovation, 23, 1-9. http://doi.org/10.1016/j.eti.2021.101779
Hu, J., Zhang, J., & He, J. (2021). Structures, synthesis and biological activities of nonactic acid and its derivatives. Current Medicinal Chemistry, 28(42), 8673-8691. http://doi.org/10.2174/0929867328666210628144347
Ifeanyi, O. E. (2018). A review on free radicals and antioxidants. Int. J. Curr. Res. Med. Sci, 4(2), 123-133. http://dx.doi.org/10.22192/ijcrms.2018.04.02.019
Ilango, S., Sahoo, D. K., Paital, B., Kathirvel, K., Gabriel, J. I., Subramaniam, K., ... & Nirmaladevi, R. (2022). A review on annona muricata and its anticancer activity. Cancers, 14(18), 1-31. http://doi.org/10.3390/cancers14184539
Jakkranuhwat, N., & Kunchansombat, P. (2021). Effect of foam-mat drying conditions on antioxidant activity, total phenolic compound, anthocyanin content and color of purple-fleshed sweet potato powder. CMUJ. Nat. Sci, 20(2), 1-8. http://doi.org/10.12982/CMUJNS.2021.045
Jiang, C., Wang, L., Huang, X., Zhu, S., Ma, C., & Wang, H. (2021). Structural characterization and antioxidant property of enzymatic‐transesterification derivatives of (−)‐epigallocatechin‐3‐O‐gallate and vinyl laurate. Journal of Food Science, 86(10), 4717-4729. http://doi.org/10.1111/1750-3841.15894
Kabara, J. J., Swieczkowski, D. M., Conley, A. J., & Truant, J. P. (1972). Fatty acids and derivatives as antimicrobial agents. Antimicrobial agents and chemotherapy, 2(1), 23-28. http://doi.org/10.1128/aac.2.1.23
Karthik, Y., Ishwara Kalyani, M., Krishnappa, S., Devappa, R., Anjali Goud, C., Ramakrishna, K., ... & Mushtaq, M. (2023). Antiproliferative activity of antimicrobial peptides and bioactive compounds from the mangrove Glutamicibacter mysorens. Frontiers in Microbiology, 14, 1-20. http://doi.org/10.3389/fmicb.2023.1096826
Kocaoğlu, E., Talaz, O., Çavdar, H., Şentürk, M., Supuran, C. T., & Ekinci, D. (2019). Determination of the inhibitory effects of N-methylpyrrole derivatives on glutathione reductase enzyme. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 51-54. http://doi.org/10.1080/14756366.2018.1520228
Kolar, M. J., Konduri, S., Chang, T., Wang, H., McNerlin, C., Ohlsson, L., ... & Saghatelian, A. (2019). Linoleic acid esters of hydroxy linoleic acids are anti-inflammatory lipids found in plants and mammals. Journal of Biological Chemistry, 294(27), 10698-10707. http://doi.org/10.1074/jbc.RA118.006956
Krishnamoorthy, K., & Subramaniam, P. (2014). Phytochemical profiling of leaf, stem, and tuber parts of Solena amplexicaulis (Lam.) Gandhi using GC-MS. International scholarly research notices, 2014. 1–13. http://doi.org/10.1155/2014/567409
Lipińska, M. M., Haliński, Ł. P., Gołębiowski, M., & Kowalkowska, A. K. (2023). Active Compounds with Medicinal Potential Found in Maxillariinae Benth.(Orchidaceae Juss.) Representatives—A Review. International Journal of Molecular Sciences, 24(1), 1-35. http://doi.org/10.3390/ijms24010739
Lubis, M.F., Kaban, V.E., Gurning, K., Parhan, P., Syahputra, H., Juwita, N.A., Astyka, R., Zulfansyah, I. (2023). Phytochemicals and Biological Activities of Ethanolic Extract of Garcinia atroviridis Leaf Grown in Indonesia. J Med Chem Sci. 6(10):2456–2469. http://doi.org/10.26655/JMCHEMSCI.2023.10.20
Makky, E. A., AlMatar, M., Mahmood, M. H., Ting, O. W., & Qi, W. Z. (2021). Evaluation of the antioxidant and antimicrobial activities of ethyl acetate extract of Saccharomyces cerevisiae. Food technology and biotechnology, 59(2), 127-136. http://doi.org/10.17113/ftb.59.02.21.6658
Marrufo, T., Nazzaro, F., Mancini, E., Fratianni, F., Coppola, R., De Martino, L., ... & De Feo, V. (2013). Chemical composition and biological activity of the essential oil from leaves of Moringa oleifera Lam. cultivated in Mozambique. Molecules, 18(9), 10989-11000. http://doi.org/10.3390/molecules180910989
Musa, A. M., Ibrahim, M. A., Aliyu, A. B., Abdullahi, M. S., Tajuddeen, N., Ibrahim, H., & Oyewale, A. O. (2015). Chemical composition and antimicrobial activity of hexane leaf extract of Anisopus mannii (Asclepiadaceae). Journal of intercultural ethnopharmacology, 4(2), 129-133. http://doi.org/10.5455/jice.20150106124652
Mutakin, M., Fauziati, R., Fadhilah, F. N., Zuhrotun, A., Amalia, R., & Hadisaputri, Y. E. (2022). Pharmacological activities of soursop (Annona muricata Lin.). Molecules, 27(4), 1201, 1-17. http://doi.org/10.3390/molecules27041201
Muzahid, A. A., Sharmin, S., Hossain, M. S., Ahamed, K. U., Ahmed, N., Yeasmin, M. S., ... & Bhuiyan, M. N. H. (2023). Analysis of bioactive compounds present in different crude extracts of Benincasa hispida and Cucurbita moschata seeds by gas chromatography-mass spectrometry. Heliyon, 9(1), 1-9. http://doi.org/10.3390/molecules27041201
Octarya, Z., Novianty, R., Suraya, N., & SARYONO, S. (2021). Antimicrobial activity and GC-MS analysis of bioactive constituents of Aspergillus fumigatus 269 isolated from Sungai Pinang Hot Spring, Riau, Indonesia. Biodiversitas Journal of Biological Diversity, 22(4), 1839-1845. http://doi.org/10.13057/biodiv/d220429
Padmashree, M., Ashwathanarayana, R., & Raja Naika, R. B. (2018). Antioxidant, cytotoxic and nutritive properties of Roem & Schult. Ipomoea staphylina plant extracts with preliminary phytochemical and GCMS analysis. Asian Journal of Pharmacy and Pharmacology, 4(4), 473-92. http://doi.org/10.31024/ajpp.2018.4.4.16
Petkova, N., Bileva, T., Valcheva, E., Dobrevska, G., Grozeva, N., Todorova, M., & Popov, V. (2022). Non-polar fraction constituents, phenolic acids, flavonoids and antioxidant activity in fruits from Florina apple variety grown under different agriculture management. Natural and Life Science Communications, 22(1), 1-13. http://doi.org/10.12982/NLSC.2023.012
Pomatto, L. C., & Davies, K. J. (2018). Adaptive homeostasis and the free radical theory of ageing. Free Radical Biology and Medicine, 124, 420-430. http://doi.org/10.1016/j.freeradbiomed.2018.06.016
Punthi, F., & Jomduang, S. (2021). Effect of processing steps on bioactive compounds and antioxidant activities of high anthocyanin mulberry fruit powder. CMUJ. Nat. Sci, 20(2), 1-9. http://doi.org/10.12982/CMUJNS.2021.043
Sartagoda, K. J., Ilano, M. C., Flandez, L. E., & Castillo-Israel, K. A. (2021). Evaluation of the antioxidant activity of bignay (Antidesma bunius (Linn.) Spreng var. Kalabaw) flesh and seeds as affected by maturity and processing method. CMUJ. Nat. Sci, 20(2), 1-10. http://doi.org/10.12982/CMUJNS.2021.042
Sharma, D., Rani, R., Chaturvedi, M., & Yadav, J. P. (2018). Anibacterial efficacy and gas chromatography-mass spectrometery analysis of bioactive compounds present in different extracts of Allium sativum. Asian Journal Pharm Clin Res, 11, 280-286. http://doi.org/10.22159/ajpcr.2018.v11i4.24053
Sinaga, S. P., Lumbangaol, D. A., Iksen, R. F. R., & Gurning, K. (2022). Determination of phenolic, flavonoid content, antioxidant and antibacterial activities of seri (Muntingia calabura L.) leaves ethanol extract from North Sumatera, Indonesia. Rasayan Journal of Chemistry, 15(02), 1534-1538. http://doi.org/10.31788/RJC.2022.1526730
Siswadi, S., & Saragih, G. S. (2021, May). Phytochemical analysis of bioactive compounds in ethanolic extract of Sterculia quadrifida R. Br. In AIP Conference Proceedings (Vol. 2353, No. 1). AIP Publishing. 1-8. http://doi.org/10.1063/5.0053057
Situmorang, R. F. R., Gurning, K., Kaban, V. E., Butar-Butar, M. J., & Perangin-Angin, S. A. B. (2022). Determination of total phenolic content, analysis of bioactive compound components, and antioxidant activity of ethyl acetate Seri (Muntingia calabura L.) leaves from North Sumatera Province, Indonesia. Open Access Macedonian Journal of Medical Sciences, 10(A), 240-244. http://doi.org/10.3889/oamjms.2022.8362
Soltan, O. I., Gazwi, H. S., Ragab, A. E., Aljohani, A. S., El-Ashmawy, I. M., Batiha, G. E. S., ... & Abdel-Hameed, S. M. (2023). Assessment of bioactive phytochemicals and utilization of Rosa canina fruit extract as a novel natural antioxidant for mayonnaise. Molecules, 28(8), 1-19. http://doi.org/10.3390/molecules28083350
Sopalun, K., Laosripaiboon, W., Wachirachaikarn, A., & Iamtham, S. (2021). Biological potential and chemical composition of bioactive compounds from endophytic fungi associated with thai mangrove plants. South African Journal of Botany, 141, 66-76. http://doi.org/10.1016/j.sajb.2021.04.031
Tambunan, I. Y. B., Siringo-Ringo, E., Butar-Butar, M. J., & Gurning, K. (2023). GC-MS analysis of bioactive compounds and antibacterial activity of nangka leaves (Artocarpus heterophyllus Lam). Pharmacia, 70(1), 67-72. http://doi.org/10.3897/pharmacia.70.e97990
Tan, B. L., Norhaizan, M. E., Liew, W. P. P., & Sulaiman Rahman, H. (2018). Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Frontiers in pharmacology, 9, 1-28. http://doi.org/10.3389/fphar.2018.01162
Vats, S., & Gupta, T. (2017). Evaluation of bioactive compounds and antioxidant potential of hydroethanolic extract of Moringa oleifera Lam. from Rajasthan, India. Physiology and molecular biology of plants, 23, 239-248. http://doi.org/10.1007/s12298-016-0407-6
Wahab, S.M.A., Jantan, I., Haque, M. A., & Arshad, L. (2018). Exploring the leaves of Annona muricata L. as a source of potential anti-inflammatory and anticancer agents. Frontiers in pharmacology, 9, 1-20. http://doi.org/10.3389/fphar.2018.00661
Willie, P., Uyoh, E. A., & Aikpokpodion, P. O. (2021). Gas chromatography-mass spectrometry (GC-MS) assay of bio-active compounds and phytochemical analyses in three species of apocynaceae. Pharmacognosy Journal, 13(2), 383–392. http://doi.org/10.5530/pj.2021.13.49
Statistics
294 Views | 236 Downloads
How to Cite
Tambunan, I., Siringo-Ringo, E., Butar-Butar, M., Febrianti, R., & Gurning, K. (2024). Phytochemical Screening, Identification of Compounds, and Antioxidant Activity Test of Sirsak Extract (Annona muricata, L.) Leaf Grown in North Sumatra, Indonesia. International Journal of Advancement in Life Sciences Research, 7(2), 132-142. https://doi.org/https://doi.org/10.31632/ijalsr.2024.v07i02.011