Recent Understanding on Genetic and Neurobiological Alterations in Major Depressive Disorder
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide, characterized by persistent low mood, anhedonia and cognitive impairments. Despite advancements in understanding its multifactorial aetiology, treatment outcomes remain inconsistent due to the complex interplay of genetic and neurobiological factors. A systematic review was conducted following PRISMA guidelines using databases including PubMed, Scopus, Web of Science and PsycINFO. Studies from 2000 to 2025 were included if they covered genetic polymorphisms, neurobiological markers or molecular pathways in MDD. Analysis of 87 studies identified 13 key genes and 19 biological markers linked to MDD. Genetic polymorphisms like SLC6A4, TPH2, BDNF Val66Met and FKBP5 influence neurotransmitter synthesis, neuroplasticity and HPA axis regulation. Neurobiological markers including cortisol, BDNF, CRP, IL-6 and serotonin levels exhibit consistent dysregulation in MDD patients. Associations of genetic and biomarker alterations with MDD symptomatology and treatment outcomes are summarized. Through GeneMANIA, we constructed a functional gene interaction network of the selected 13 genes, which exhibits strong functional connectivity through physical interactions (66.18%), co-expression (20.86%) and co-localization (12.97%). In conclusion, MDD arises from multifactorial genetic and neurobiological alterations. The trend towards personalised medicine is supported by a number of genes and biomarkers that exhibit promise as diagnostic and prognostic tools. However, additional meta-analytic and longitudinal research is required to validate these relationships due to the variety in study designs and demographics.
Downloads
References
Anacker, C., Zunszain, P. A., Carvalho, L. A., & Pariante, C. M. (2011). The glucocorticoid receptor: pivot of depression and of antidepressant treatment?. Psychoneuroendocrinology, 36(3), 415-425. https://doi.org/10.1016/j.psyneuen.2010.03.007
Arvind, A., Sreelekshmi, S., & Dubey, N. (2025). Genetic, epigenetic, and hormonal regulation of stress phenotypes in major depressive disorder: from maladaptation to resilience. Cellular and Molecular Neurobiology, 45(1), 1-23.https://doi.org/10.1007/s10571-025-01549-x
Autry, A. E., & Monteggia, L. M. (2012). Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacological reviews, 64(2), 238-258. https://doi.org/10.1124/pr.111.005108
Belujon, P., & Grace, A. A. (2017). Dopamine system dysregulation in major depressive disorders. International Journal of Neuropsychopharmacology, 20(12), 1036-1046. https://doi.org/10.1093/ijnp/pyx056
Bertollo, A. G., Galvan, A. C. L., Dallagnol, C., Cortez, A. D., & Ignácio, Z. M. (2024). Early life stress and major depressive disorder—an update on molecular mechanisms and synaptic impairments. Molecular Neurobiology, 61(9), 6469-6483. https://doi.org/10.1007/s12035-024-03983-2
Bhatt, S., Nagappa, A. N., & Patil, C. R. (2020). Role of oxidative stress in depression. Drug discovery today, 25(7), 1270-1276. https://doi.org/10.1016/j.drudis.2020.05.001
Bosker, F. J., Hartman, C. A., Nolte, I. M., Prins, B. P., Terpstra, P., Posthuma, D., ... & Nolen, W. A. (2011). Poor replication of candidate genes for major depressive disorder using genome-wide association data. Molecular psychiatry, 16(5), 516-532. https://doi.org/10.1038/mp.2010.38
Chaves, T., Fazekas, C. L., Horváth, K., Correia, P., Szabó, A., Török, B., ... & Zelena, D. (2021). Stress adaptation and the brainstem with focus on corticotropin-releasing hormone. International journal of molecular sciences, 22(16), 9090. https://doi.org/10.3390/ijms22169090
Chen, G. L., & Miller, G. M. (2012). Advances in tryptophan hydroxylase‐2 gene expression regulation: New insights into serotonin–stress interaction and clinical implications. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 159(2), 152-171. https://doi.org/10.0.1002/ajmg.b.32023
Chiriţă, A. L., Gheorman, V., Bondari, D., & Rogoveanu, I. (2015). Current understanding of the neurobiology of major depressive disorder. Rom J Morphol Embryol, 56(2 Suppl), 651-8. gy.
Cowen, P. J., & Browning, M. (2015). What has serotonin to do with depression? World psychiatry, 14(2), 158. https://doi.org/10.1002/wps.20229
De Felice, A., Ricceri, L., Venerosi, A., Chiarotti, F., & Calamandrei, G. (2015). Multifactorial origin of neurodevelopmental disorders: approaches to understanding complex etiologies. Toxics, 3(1), 89-129. https://doi.org/10.3390/toxics3010089
Donato, R., R cannon, B., Sorci, G., Riuzzi, F., Hsu, K., J Weber, D., & L Geczy, C. (2013). Functions of S100 proteins. Current molecular medicine, 13(1), 24-57. https://doi.org/10.2174/156652413804486214
Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E. K., & Lanctôt, K. L. (2010). A meta-analysis of cytokines in major depression. Biological psychiatry, 67(5), 446-457. https://doi.org/10.1016/j.biopsych.2009.09.033
Duman, E. A., & Canli, T. (2015). Influence of life stress, 5-HTTLPR genotype, and SLC6A4 methylation on gene expression and stress response in healthy Caucasian males. Biology of mood & anxiety disorders, 5(1), 2. https://doi.org/10.1186/s13587-015-0017-x
Duman, R. S., & Aghajanian, G. K. (2012). Synaptic dysfunction in depression: potential therapeutic targets. science, 338(6103), 68-72.https://doi.org/10.1126/science.1222939
Fabbri, C., & Serretti, A. (2015). Pharmacogenetics of major depressive disorder: top genes and pathways toward clinical applications. Current psychiatry reports, 17(7), 50. https://doi.org/10.1007/s11920-015-0594-9
Fabbri, C., Montgomery, S., Lewis, C. M., & Serretti, A. (2020). Genetics and major depressive disorder: clinical implications for disease risk, prognosis and treatment. International clinical psychopharmacology, 35(5), 233-242. https://doi.org/10.1097/YIC.0000000000000305
Ferrari, A. J. (2014). Formulating a complete epidemiological profile of major depressive disorder: Investigating the global distribution, risk factors, outcomes, and burden of major depressive disorder. https://doi.org/10.1371/journal.pone.0069637
Folstein, M., Liu, T., Peter, I., Buel, J., Arsenault, L., Scott, T., & Qiu, W. W. (2007). The Homocysteine Hypothesis of Depression: Erratum. https://doi.org/10.1176/ajp.2007.164.6.861
Forlenza, M. J., & Miller, G. E. (2006). Increased serum levels of 8-hydroxy-2′-deoxyguanosine in clinical depression. Psychosomatic medicine, 68(1), 1-7. https://doi.org/10.1097/01.psy.0000195780.37277.2a
Frazer, A. (2001). Serotonergic and noradrenergic reuptake inhibitors: prediction of clinical effects from in vitro potencies. Journal of Clinical Psychiatry, 62(12), 16-23.
Fries, G. R., Saldana, V. A., Finnstein, J., & Rein, T. (2023). Molecular pathways of major depressive disorder converge on the synapse. Molecular Psychiatry, 28(1), 284-297. https://doi.org/10.1038/s41380-022-01806-1
Gałecki, P., & Talarowska, M. (2018). Inflammatory theory of depression. Psychiatr Pol, 52(3), 437-447. https://doi.org/10.12740/PP/76863
Gryglewski, G., Lanzenberger, R., Kranz, G. S., & Cumming, P. (2014). Meta-analysis of molecular imaging of serotonin transporters in major depression. Journal of Cerebral Blood Flow & Metabolism, 34(7), 1096-1103. https://doi.org/10.1038/jcbfm.2014.82
Gulfishan, S., Halder, S., Kar, R., Srivastava, S., & Gupta, R. (2022). Association of serotonin transporter gene polymorphism with efficacy of the antidepressant drugs sertraline and mirtazapine in newly diagnosed patients with major depressive disorders. Human Psychopharmacology: Clinical and Experimental, 37(4), e2833. https://doi.org/10.1002/hup.2833
Guo, S., Dong, Y., Shu, Y., Wu, X., Li, C., Ni, Y., & Ma, W. (2025). MicroRNA-669g impairs serotonin balance through TPH2 downregulation and induces behavioral deficits. Behavioural Brain Research, 115861. https://doi.org/10.1016/j.bbr.2025.115861
Haapakoski, R., Mathieu, J., Ebmeier, K. P., Alenius, H., & Kivimäki, M. (2015). Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain, behavior, and immunity, 49, 206-215. https://doi.org/10.1016/j.bbi.2015.06.001
Han, E., Canada, K. A., Puglia, M. H., Pelphrey, K. A., & Evans, T. M. (2025). The Convergence of Early-Life Stress and Autism Spectrum Disorder on the Epigenetics of Genes Key to the HPA Axis. Biology, 15(1), 66. https://doi.org/10.3390/biology15010066
Harsanyi, S., Kupcova, I., Danisovic, L., & Klein, M. (2022). Selected biomarkers of depression: what are the effects of cytokines and inflammation?. International journal of molecular sciences, 24(1), 578. https://doi.org/10.3390/ijms24010578
Hartmann, J., Bajaj, T., Klengel, C., Chatzinakos, C., Ebert, T., Dedic, N., ... & Ressler, K. J. (2021). Mineralocorticoid receptors dampen glucocorticoid receptor sensitivity to stress via regulation of FKBP5. Cell reports, 35(9). https://doi.org/10.1016/j.celrep.2021.109185
Herman, J. P., McKlveen, J. M., Ghosal, S., Kopp, B., Wulsin, A., Makinson, R., ... & Myers, B. (2016). Regulation of the hypothalamic‐pituitary‐adrenocortical stress response. Comprehensive physiology, 6(2), 603-621. https://doi.org/10.1002/j.2040-4603.2016.tb00694.x
Holmes Jr, L., Shutman, E., Chinaka, C., Deepika, K., Pelaez, L., & Dabney, K. W. (2019). Aberrant epigenomic modulation of glucocorticoid receptor gene (NR3C1) in early life stress and major depressive disorder correlation: systematic review and quantitative evidence synthesis. International journal of environmental research and public health, 16(21), 4280. https://doi.org/10.3390/ijerph16214280
Holmes, A. (2008). Genetic variation in cortico-amygdala serotonin function and risk for stress-related disease. Neuroscience & Biobehavioral Reviews, 32(7), 1293-1314. https://doi.org/10.1016/j.neubiorev.2008.03.006
Holsen, L. M., Lancaster, K., Klibanski, A., Whitfield-Gabrieli, S., Cherkerzian, S., Buka, S., & Goldstein, J. M. (2013). HPA-axis hormone modulation of stress response circuitry activity in women with remitted major depression. Neuroscience, 250, 733-742. https://doi.org/10.16/j.neuroscience.2013.07.042
Khandaker, G. M., Pearson, R. M., Zammit, S., Lewis, G., & Jones, P. B. (2014). Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: a population-based longitudinal study. JAMA psychiatry, 71(10),1121-1128. https://doi.org/10.1001/jamapsychiatry.2014.1332
Köhler, C. A., Freitas, T. H., Stubbs, B., Maes, M., Solmi, M., Veronese, N., ... & Carvalho, A. F. (2018). Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: systematic review and meta-analysis. Molecular neurobiology, 55(5), 4195-4206. https://doi.org/10.1007/s12035-017-0632-1
Kopschina Feltes, P., Doorduin, J., Klein, H. C., Juárez-Orozco, L. E., Dierckx, R. A., Moriguchi-Jeckel, C. M., & de Vries, E. F. (2017). Anti-inflammatory treatment for major depressive disorder: implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy. Journal of Psychopharmacology, 31(9), 1149-1165. https://doi.org/10.1177/0269881117711708
Koutsouleris, N., & Fusar-Poli, P. (2024). From heterogeneity to precision: redefining diagnosis, prognosis, and treatment of mental disorders. Biological Psychiatry, 96(7), 508-510. https://doi.org/10.1016/j.biopsych.2024.07.015
Krasner, S., Liberman, J., Sosner, N., & Stevens, M. (2025). Are Completion Portfolios Effective for Managing Concentrated Stock Risk?. Available at SSRN 5251616. https://doi.org/10.2139/ssrn.5251616
Kraus, C., Kadriu, B., Lanzenberger, R., Zarate Jr, C. A., & Kasper, S. (2019). Prognosis and improved outcomes in major depression: a review. Translational psychiatry, 9(1), 127. https://doi.org/10.1038/s41398-019-0460-3
Lee, R. S., & Sawa, A. (2015). Environmental stressors and epigenetic control of the hypothalamic-pituitary-adrenal axis. Neuroendocrinology, 100(4), 278-287. https://doi.org/10.1159/000369585
Li, J., Li, L., Wang, Y., Huang, G., Li, X., Xie, Z., & Zhou, Z. (2021). Insights into the role of DNA methylation in immune cell development and autoimmune disease. Frontiers in cell and developmental biology, 9, 757318. https://doi.org/10.3389/fcell.2021.757318
Liana, S. (2024, March). DEPRESSION IS THE MOST COMMON MENTAL DISORDER OF HUMANITY IN THE GLOBAL WORLD. In The 12th International scientific and practical conference “Modern thoughts on the development of science: ideas, technologies and theories”(March 26–29, 2024) Amsterdam, Netherlands. International Science Group. 2024. 336 p. (p. 198). https://doi.org/10.46299/ISG.2024.1.12
Liu, J., Liu, Y., Ma, W., Tong, Y., & Zheng, J. (2024). Temporal and spatial trend analysis of all-cause depression burden based on Global Burden of Disease (GBD) 2019 study. Scientific reports, 14(1), 12346. https://doi.org/10.1038/s41598-024-62381-9
Lopizzo, N., Bocchio Chiavetto, L., Cattane, N., Plazzotta, G., Tarazi, F. I., Pariante, C. M., ... & Cattaneo, A. (2015). Gene–environment interaction in major depression: focus on experience-dependent biological systems. Frontiers in psychiatry, 6, 68. https://doi.org/10.3389/fpsyt.2015.00068
Maes, M., Mihaylova, I., Kubera, M., & Ringel, K. (2012). Activation of cell-mediated immunity in depression: association with inflammation, melancholia, clinical staging and the fatigue and somatic symptom cluster of depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 36(1), 169-175. https://doi.org/10.1016/j.pnpbp.2010.05.004
Marx, W., Penninx, B. W., Solmi, M., Furukawa, T. A., Firth, J., Carvalho, A. F., & Berk, M. (2023). Major depressive disorder. Nature Reviews Disease Primers, 9(1), 44. https://doi.org/10.1038/s41572-023-00454-1
McDermott, R., Tingley, D., Cowden, J., Frazzetto, G., & Johnson, D. D. (2009). Monoamine oxidase A gene (MAOA) predicts behavioral aggression following provocation. Proceedings of the National Academy of Sciences, 106(7), 2118-2123. https://doi.org/10.1073/pnas.0808376106
McEwen, B. S., Nasca, C., & Gray, J. D. (2016). Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology, 41(1), 3-23. https://doi.org/10.1038/npp.2015.171
Mehra, A., Khanna, J., Singh, G., Sachdeva, V., & Bedi, N. (2025). A Comprehensive Review on Major Depressive Disorder: Exploring Etiology, Pathogenesis and Clinical Approaches. Current Behavioral Neuroscience Reports, 12(1), 18.https://doi.org/10.1007/s40473-025-00308-y
Mekli, K., Payton, A., Miyajima, F., Platt, H., Thomas, E., Downey, D., ... & Juhasz, G. (2011). The HTR1A and HTR1B receptor genes influence stress-related information processing. European Neuropsychopharmacology, 21(1), 129-139. https://doi.org/10.1016/j.euroneuro.2010.06.013
Menezo, Y., Elder, K., Clement, A., & Clement, P. (2022). Folic acid, folinic acid, 5 methyl tetrahydrofolate supplementation for mutations that affect epigenesis through the folate and one-carbon cycles. Biomolecules, 12(2), 197. https://doi.org/10.3390/biom12020197
Miller, A. H., & Raison, C. L. (2023). Burning down the house: reinventing drug discovery in psychiatry for the development of targeted therapies. Molecular Psychiatry, 28(1), 68-75. https://doi.org/10.1038/s41380-022-01887-y
Miller, D. B., & O'Callaghan, J. P. (2013). Personalized medicine in major depressive disorder—opportunities and pitfalls. Metabolism, 62, S34-S39. https://doi.org/10.1016/j.metabol.2012.08.021
Molla, G., & Bitew, M. (2024). Revolutionizing personalized medicine: synergy with multi-omics data generation, main hurdles, and future perspectives. Biomedicines, 12(12), 2750. https://doi.org/10.3390/biomedicines12122750
Murphy, D. L., & Lesch, K. P. (2008). Targeting the murine serotonin transporter: insights into human neurobiology. Nature Reviews Neuroscience, 9(2), 85-96. https://doi.org/10.1038/nrn2284
Myint, A. M., & Kim, Y. K. (2014). Network beyond IDO in psychiatric disorders: revisiting neurodegeneration hypothesis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 48, 304-313. https://doi.org/10.1016/j.pnpbp.2013.08.008
Nguyen, T. D., Harder, A., Xiong, Y., Kowalec, K., Hägg, S., Cai, N., ... & Lu, Y. (2022). Genetic heterogeneity and subtypes of major depression. Molecular psychiatry, 27(3), 1667-1675. https://doi.org/10.1038/s41380-021-01413-6
Normann, C., & Buttenschøn, H. N. (2020). Gene–environment interactions between HPA-axis genes and childhood maltreatment in depression: A systematic review. Acta neuropsychiatrica, 32(3), 111-121. https://doi.org/10.1017/neu.2020.1
Notaras, M., Hill, R., & van den Buuse, M. (2015). The BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: progress and controversy. Molecular psychiatry, 20(8), 916-930. https://doi.org/10.1038/mp.2015.27
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. bmj, 372. https://doi.org/10.1136/bmj.n71
Pandi‐Perumal, S. R., Srinivasan, V., Maestroni, G. J. M., Cardinali, D. P., Poeggeler, B., & Hardeland, R. (2006). Melatonin: Nature's most versatile biological signal?. The FEBS journal, 273(13), 2813-2838. https://doi.org/10.2174/187221413804660953
Pariante, C. M., & Lightman, S. L. (2008). The HPA axis in major depression: classical theories and new developments. Trends in neurosciences, 31(9), 464-468. https://doi.org/10.1016/j.tins.2008.06.006
Peters, R. B., Xavier, J., Mondin, T. C., Cardoso, T. D. A., Ferreira, F. B., Teixeira, L..,& Ghisleni, G. (2020). BDNF Val66Met polymorphism and resilience in major depressive disorder: the impact of cognitive psychotherapy. Brazilian Journal of Psychiatry, 43(1), 22-28. https://doi.org/10.1590/1516-4446-2019-0726
Phillips, M. L., & Kendler, K. S. (2021). Three important considerations for studies examining pathophysiological pathways in psychiatric illness: in-depth phenotyping, biological assessment, and causal inferences. JAMA psychiatry, 78(7), 697-698. https://doi.org/10.1001/jamapsychiatry.2021.0022
Pitsillou, E., Bresnehan, S. M., Kagarakis, E. A., Wijoyo, S. J., Liang, J., Hung, A., & Karagiannis, T. C. (2020). The cellular and molecular basis of major depressive disorder: towards a unified model for understanding clinical depression. Molecular biology reports, 47(1), 753-770. https://doi.org/10.1007/s11033-019-05129-3
Podgorny, O. V., & Gulyaeva, N. V. (2021). Glucocorticoid‐mediated mechanisms of hippocampal damage: Contribution of subgranular neurogenesis. Journal of Neurochemistry, 157(3), 370-392. https://doi.org/10.1111/jnc.15265
Radosavljevic, S., Banitz, T., Grimm, V., Johansson, L. G., Lindkvist, E., Schlüter, M., & Ylikoski, P. (2023). Dynamical systems modeling for structural understanding of social-ecological systems: A primer. Ecological Complexity, 56, 101052. https://doi.org/10.1016/j.ecocom.2023.101052
Rivero, G., Martín-Guerrero, I., de Prado, E., Gabilondo, A. M., Callado, L. F., García-Sevilla, J. A., ... & Meana, J. J. (2016). Alpha2C-adrenoceptor Del322-325 polymorphism and risk of psychiatric disorders: significant association with opiate abuse and dependence. The World Journal of Biological Psychiatry, 17(4), 308-315. https://doi.org/10.3109/15622975.2016.1142608
Saltiel, P. F., & Silvershein, D. I. (2015). Major depressive disorder: mechanism-based prescribing for personalized medicine. Neuropsychiatric disease and treatment, 875-888. https://doi.org/10.2147/NDT.S73261
Savitz, J. (2020). The kynurenine pathway: a finger in every pie. Molecular psychiatry, 25(1), 131-147. https://doi.org/10.1038/s41380-019-0414-4
Sen, S., Duman, R., & Sanacora, G. (2008). Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biological psychiatry, 64(6), 527-532. https://doi.org/10.1016/j.biopsych.2008.05.005
Sigurdsson, T., & Duvarci, S. (2016). Hippocampal-prefrontal interactions in cognition, behavior and psychiatric disease. Frontiers in systems neuroscience, 9, 190. https://doi.org/10.3389/fnsys.2015.00190
Tarai, S., Mukherjee, R., Gupta, S., Rizvanov, A. A., Palotás, A., Chandrasekhar Pammi, V. S., & Bit, A. (2019). Influence of pharmacological and epigenetic factors to suppress neurotrophic factors and enhance neural plasticity in stress and mood disorders. Cognitive Neurodynamics, 13(3), 219-237. https://doi.org/10.1007/s11571-019-09522-3
Taylor, C., Crosby, I., Yip, V., Maguire, P., Pirmohamed, M., & Turner, R. M. (2020). A Review of the Important Role of CYP2D6 in Pharmacogenomics. Genes, 11(11), 1295. https://doi.org/10.3390/genes11111295
Tobe, E. H. (2013). Mitochondrial dysfunction, oxidative stress, and major depressive disorder. Neuropsychiatric disease and treatment, 567-573. https://doi.org/10.2147/NDT.S44282
Troubat, R., Barone, P., Leman, S., Desmidt, T., Cressant, A., Atanasova, B., ... & Camus, V. (2021). Neuroinflammation and depression: A review. European journal of neuroscience, 53(1), 151-171. https://doi.org/10.1111/ejn.14720
Tunbridge, E. M., Narajos, M., Harrison, C. H., Beresford, C., Cipriani, A., & Harrison, P. J. (2019). Which dopamine polymorphisms are functional? Systematic review and meta-analysis of COMT, DAT, DBH, DDC, DRD1–5, MAOA, MAOB, TH, VMAT1, and VMAT2. Biological Psychiatry, 86(8), 608-620. https://doi.org/10.1016/j.biopsych.2019.05.014
Vaughan, R. A., & Foster, J. D. (2013). Mechanisms of dopamine transporter regulation in normal and disease states. Trends in pharmacological sciences, 34(9), 489-496. https://doi.org/10.1016/j.tips.2013.07.005
Villani, V., Ludmer, J., Gonzalez, A., Levitan, R., Kennedy, J., Masellis, M., ... & Atkinson, L. (2018). Dopamine receptor D2 (DRD2), dopamine transporter solute carrier family C6, member 4 (SLC6A3), and catechol-O-methyltransferase (COMT) genes as moderators of the relation between maternal history of maltreatment and infant emotion regulation. Development and psychopathology, 30(2), 581-592. https://doi.org/10.1017/S0954579417001122
Wagner, G., Koch, K., Schachtzabel, C., Schultz, C. C., Sauer, H., & Schlösser, R. G. (2011). Structural brain alterations in patients with major depressive disorder and high risk for suicide: evidence for a distinct neurobiological entity?. Neuroimage, 54(2), 1607-1614. https://doi.org/10.1016/j.neuroimage.2010.08.082
Wassenberg, T., Geurtz, B. P., Monnens, L., Wevers, R. A., Willemsen, M. A., & Verbeek, M. M. (2021). Blood, urine and cerebrospinal fluid analysis in TH and AADC deficiency and the effect of treatment. Molecular Genetics and Metabolism Reports, 27, 100762. https://doi.org/10.1016/j.ymgmr.2021.100762
Wittenborn, A. K., Rahmandad, H., Rick, J., & Hosseinichimeh, N. (2016). Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder. Psychological medicine, 46(3), 551-562. https://doi.org/10.1017/S0033291715002044
Wolkowitz, O. M., Wolf, J., Shelly, W., Rosser, R., Burke, H. M., Lerner, G. K., . & Mellon, S. H. (2011). Serum BDNF levels before treatment predict SSRI response in depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(7), 1623-1630. https://doi.org/10.1016/j.pnpbp.2011.06.013
Yuan, H., Qing, L., & Zou, T. (2025). A review of the relationship between the SLC6A4 gene and mental disorders. Journal of Translational Genetics and Genomics, 9(4), 286-303. https://doi.org/10.20517/jtgg.2025.52
Zarate Jr, C. A., Singh, J. B., Quiroz, J. A., De Jesus, G., Denicoff, K. K., Luckenbaugh, D. A., ... & Charney, D. S. (2006). A double-blind, placebo-controlled study of memantine in the treatment of major depression. American Journal of Psychiatry, 163(1), 153-155. https://doi.org/10.1176/appi.ajp.163.1.153
Zhang, Y., Yue, W., & Li, J. (2024). The association of FKBP5 gene polymorphism with genetic susceptibility to depression and response to antidepressant treatment-a systematic review. BMC psychiatry, 24(1), 274. https://doi.org/10.1186/s12888-024-05717-z
Zhou, Y., Ren, W., Sun, Q., Yu, K. M., Lang, X., Li, Z., & Zhang, X. Y. (2021). The association of clinical correlates, metabolic parameters, and thyroid hormones with suicide attempts in first-episode and drug-naïve patients with major depressive disorder comorbid with anxiety: a large-scale cross-sectional study. Translational psychiatry, 11(1), 97. https://doi.org/10.1038/s41398-021-01234-9
Zhylin, M., Mendelo, V., Bondarevych, S., Kokorina, Y., & Tatianchykov, A. (2024). Genetic Basis of Emotional Regulation: Integrative Analysis of Behavioral and Neurobiological Data. OBM Neurobiology, 8(4), 1-21. https://doi.org/10.21926/obm.neurobiol.2404256

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
















.