A Comprehensive Survey on Models, Architectures, and Performance Metrics for Medicinal Plant Classification Using Machine Learning and Deep Learning Approaches
Abstract
The exponential growth in multidisciplinary research on medicinal plants has led to a diverse landscape of techniques spanning phytochemical screening, molecular characterization, image-based classification, and machine learning (ML) applications. However, the absence of an integrated, performance-driven comparative review limits the field’s ability to objectively assess methodological reliability, translational efficacy, and future scalability. This study presents a comprehensive review of 80 peer-reviewed papers, systematically evaluating them across eight performance metrics: accuracy, precision, recall, F1-score, IC₅₀, inhibition zone diameter, AUC, and RMSE. Each method—ranging from CNN-based plant classifiers to genome assembly protocols and phytochemical assays—is quantitatively analyzed and contextualized with its strengths, limitations, and domain-specific impact sets. The review includes a robust numerical extraction process, filling knowledge gaps where raw metrics were absent using expert-based approximations. A series of detailed plots, correlation matrices, heatmaps, and trend analyses are presented to reveal cross-domain patterns and identify leading techniques. The main findings indicate that deep learning models such as ECNN-PTL and MobileNet consistently achieve >97% accuracy in plant identification, omics-integrated studies highlight critical gene regulators in metabolic pathways, and phytochemical analyses confirm high antioxidant and antimicrobial efficacy, validating traditional medicinal claims. This work not only benchmarks existing research with empirical rigor but also highlights future scopes, including the need for unified datasets, functional genomics validation, and sustainable pharmacognostic modeling. The findings serve as a blueprint for researchers, bioinformaticians, and policy-makers aiming to integrate biological, computational, and therapeutic objectives in the domain of medicinal plant sciences.
Downloads
References
Aktar, M. A., Bhuia, M. S., Molla, S., Chowdhury, R., Sarkar, C., Al Shahariar, M., ... & Islam, M. T. (2024). Pharmacological and phytochemical review of Acmella oleracea: a comprehensive analysis of its therapeutic potential. Discover Applied Sciences, 6(8), 412. https://doi.org/10.1007/s42452-024-06108-5
Alam, M. W., & Rosaiah, P. (2025). Plant-Mediated Synthesis of Metal Oxide (CuO&MgO) Nanocomposites for the Suppression of Drug-Resistant Pathogens. Waste and Biomass Valorization, 16(4), 1627-1641. https://doi.org/10.1007/s12649-024-02722-x
Aljeddani, S. M. (2025). Hybrid-DeepLSTM: statistical analysis-based classification of long non-coding RNAs (lncRNAs) in plant genomes using a computational hybrid model enhanced with LSTM layers. Journal of Umm Al-Qura University for Engineering and Architecture, 1-13. https://doi.org/10.1007/s43995-025-00128-x
Amenu, D., Desalegn, R. E., Nugusa, A., Tolera, C., & Tafesse, T. (2024). Evaluation of antifungal activity of plant extracts against plant pathogen associated with sweet orange (Citrus sinensis L.), in Jimma, Western Ethiopia. Discover Applied Sciences, 6(7), 357. https://doi.org/10.1007/s42452-024-06054-2
Arif, M. R., Hussain, A., Najam, A., Sattar, A., Yaqub, S., Asif, A., ... & Wang, Y. (2025). Traditional uses, phytochemistry, and pharmacology of Flemingia macrophylla, an important traditional medicinal plant. Discover Pharmaceutical Sciences, 1(1), 2. https://doi.org/10.1007/s44395-025-00003-7
Awadh, H. I., & Ahmed, M. (2025). In vitro antibacterial activity of selected plant extracts against Escherichia coli and Staphylococcus aureus bacterial strains. Discover Applied Sciences, 7(4), 287. https://doi.org/10.1007/s42452-025-06730-x
Baskaran, S. P., Ranganathan, G., Sahoo, A. K., Kumar, K., Amaresan, J., Ramesh, K., ... & Samal, A. (2025). sCentInDB: A database of essential oil chemical profiles of Indian medicinal plants. Molecular Diversity. https://doi.org/10.1007/s11030-025-11215-5
Bisht, N., Fular, A., Ghosh, S., & Nanyiti, S. (2025). Systematic review and meta-analysis of acaricidal properties of plant derived products against Ixodid ticks population. Discover Applied Sciences, 7(3), 1-31. https://doi.org/10.1007/s42452-025-06629-7
Borah, A., Singh, S., Chattopadhyay, R., Kaur, J., & Bari, V. K. (2024). Integration of CRISPR/Cas9 with multi-omics technologies to engineer secondary metabolite productions in medicinal plant: Challenges and Prospects. Functional & Integrative Genomics, 24(6), 207. https://doi.org/10.1007/s10142-024-01486-w
Bordoloi, S., Pathak, K., Devi, M., Saikia, R., Das, J., Kashyap, V. H., ... & Abdel-Wahab, B. A. (2024). Some promising medicinal plants used in Alzheimer’s disease: an ethnopharmacological perspective. Discover Applied Sciences, 6(5), 215. https://doi.org/10.1007/s42452-024-05811-7
Chaisoung, N., Balslev, H., Suksathan, R., Panyadee, P., Long, C., Ngernsaengsaruay, C., ... & Inta, A. (2025). Essential oil and phylogenetic positions of five medicinal litsea species (Lauraceae). Diversity, 17(3), 168. https://doi.org/10.3390/d17030168
Chouhan, S. S., Singh, U. P., Sharma, U., & Jain, S. (2024). Classification of different plant species using deep learning and machine learning algorithms. Wireless Personal Communications, 136(4), 2275-2298. https://doi.org/10.1007/s11277-024-11374-y
Dalvi, P., Kalbande, D. R., Rathod, S. S., Dalvi, H., & Agarwal, A. (2025). Multi-Attribute Deep CNN-Based Approach for Detecting Medicinal Plants and their Use for Skin Diseases. IEEE Transactions on Artificial Intelligence, 6(3). 710-724. https://doi.org/10.1109/TAI.2024.3491938
Dangana, R. S., Abubakar, I. B., Shinkafi, T. S., Aja, P. M., & Nwozo, S. O. (2024). Ethnobotany, pharmacology and phytochemistry of medicinal plants used for management of Diabetes mellitus in Uganda, Kenya, Tanzania and the Democratic Republic of Congo. Discover Applied Sciences, 6(6), 312. https://doi.org/10.1007/s42452-024-05970-7
Deshpande, R., & Patidar, H. (2023). Detection of plant leaf disease by generative adversarial and deep convolutional neural network. Journal of The Institution of Engineers (India): Series B, 104(5), 1043-1052. https://doi.org/10.1007/s40031-023-00907-x
Diwedi, H. K., Misra, A., & Tiwari, A. K. (2024). CNN-based medicinal plant identification and classification using optimized SVM. Multimedia Tools and Applications, 83(11), 33823-33853. https://doi.org/10.1007/s11042-023-16733-8
Dmitriev, P. A., Dmitrieva, A. A., & Kozlovsky, B. L. (2025). Random reflectance: A new hyperspectral data preprocessing method for improving the accuracy of machine learning algorithms. AgriEngineering, 7(3), 90. https://doi.org/10.3390/agriengineering7030090
Dutta, M., Gupta, D., Juneja, S., Nauman, A., & Muhammad, G. (2024). Comparative growth analysis of onion in deep water culture and soil based systems: enhancing medicinal plant cultivation in urbanized environments. IEEE Access, 12, 38202-38218. https://doi.org/10.1109/ACCESS.2024.3373787
Edo, G. I., Mafe, A. N., Ali, A. B., Akpoghelie, P. O., Yousif, E., Isoje, E. F., ... & Alamiery, A. A. (2025). Green Biosynthesis of Nanoparticles Using Plant Extracts: Mechanisms, Advances, Challenges, and Applications. BioNanoScience, 15(2), 267. https://doi.org/10.1007/s12668-025-01883-w
El Azizi, S., Amharref, M., & Bernoussi, A. S. (2024). Assessment of water content in plant leaves using hyperspectral remote sensing and chemometrics, application: Rosmarinus officinalis. Journal of Biosystems Engineering, 49(4), 337-345. https://doi.org/10.1007/s42853-024-00236-x
Faboro, E. O., Adekunle, D. O., Obisesan, I. A., & Oyinlola, T. A. (2023). Optimization of extraction conditions for phytochemicals from Senna fistula using cheminformatics. SN Applied Sciences, 5(8), 209. https://doi.org/10.1007/s42452-023-05421-9
Fayyaz, A., Ali, N., Umar, Z. A., Asghar, H., Waqas, M., Ahmed, R., ... & Baig, M. A. (2024). CF-LIBS based elemental analysis of Saussurea simpsoniana medicinal plant: a study on roots, seeds, and leaves. Analytical Sciences, 40(3), 413-427. https://doi.org/10.1007/s44211-023-00480-9
Ghanem, D. M., Ammar, N. M., El-Hawary, S. S., Hamed, A. R., Hussein, R. A., El-Desoky, A. H., ... & Okba, M. M. (2024). Effect of Carissa macrocarpa (Eckl.) A. DC. aerial parts on some non-communicable diseases: in vitro study and HPLC-QTOF/MS-MS analysis. Discover Applied Sciences, 6(5), 238. https://doi.org/10.1007/s42452-024-05899-x
Golzarnezhad, F., Allahdou, M., Mehravaran, L., & Naderi, S. (2025). Green synthesis of ZnO nanoparticles from the extract of Cymbopogon olivieri and investigation of their antimicrobial and anticancer effects. Discover Applied Sciences, 7(3), 196. https://doi.org/10.1007/s42452-025-06623-z
Guha, P. S., Gupta, S. D., & Saha, N. (2024). Nano-gardening: Harnessing Metal Nanoparticles for Enhanced In Vitro Plant Regeneration. BioNanoScience, 14(3), 3555-3571. https://doi.org/10.1007/s12668-024-01548-0
Guo, S., Pan, R., Zhang, Y., Gu, Q., Shen, Q., Yang, J., ... & Li, R. (2025). Plant-microbe interactions influence plant performance via boosting beneficial root-endophytic bacteria. Environmental Microbiome, 20(1),18. https://doi.org/10.1186/s40793-025-00680-y
Hu, J., Wang, H., Wang, L., & Lu, Y. (2022). Graph adversarial transfer learning for diabetic retinopathy classification. IEEE Access, 10, 119071 – 119083. https://doi.org/10.1109/ACCESS.2022.3220776
Huang, H., Wang, C., Pei, S., & Wang, Y. (2023). A chromosome-level reference genome of an aromatic medicinal plant Adenosma buchneroides. Scientific Data, 10(1), 660. https://doi.org/10.1038/s41597-023-02571-8
Iqbal, U., Aslam, M. U., Gul, M. F., Rehman, F. U., Farooq, U., Daad, A., & Ali, A. (2025). Life-history strategy shifts in Withania somnifera (L.) Dunal (Winter cherry) in the face of combined environmental stresses. Arabian Journal for Science and Engineering, 50(9), 6259-6283. https://doi.org/10.1007/s13369-024-09367-x
Islam, M. T., Rahman, W., Hossain, M. S., Roksana, K., Azpíroz, I. D., Diaz, R. M., ... & Samad, M. A. (2024). Medicinal plant classification using particle swarm optimized cascaded network. IEEE Access, 12, 42465-42478. https://doi.org/10.1109/ACCESS.2024.3378262
Jadhav, S. B., & Patil, S. B. (2024). Plant leaf species identification using LBHPG feature extraction and machine learning classifier technique. Soft Computing, 28(6), 5609-5623. https://doi.org/10.1007/s00500-023-09358-4
Jeong, S., Kim, Y., Ji, H., Song, J. H., & Park, I. (2025). Comparative study of phytolacca species through morphological, chloroplast genome, and phylogenetic analysis. Applied Sciences (2076-3417), 15(2), 593 pages. https://doi.org/10.3390/app15020593
Kavitha, S., Kumar, T. S., Naresh, E., Kalmani, V. H., Bamane, K. D., & Pareek, P. K. (2023). Medicinal plant identification in real-time using deep learning model. SN Computer Science, 5(1), 73. https://doi.org/10.1007/s42979-023-02398-5
Khan, I. U., Khan, H. A., & Lee, J. W. (2024). Dual-stream architecture enhanced by soft-attention mechanism for plant species classification. Plants, 13(18), 2655. https://doi.org/10.3390/plants13182655
Khatoon, N., Alam, Z., Hussain, I., Khubaib, B., Javed, M. A., & Ali, Q. (2024). Comprehensive analysis of Seriphidium kurramense: GC/MS profiling, antibacterial and antibiofilm activities, molecular docking study and in-silico ADME profiling. Discover Applied Sciences, 6(3), 107. https://doi.org/10.1007/s42452-024-05761-0
Kowsalya, K., Vidya, N., Halka, J., Preetha, J. S. Y., Saradhadevi, M., Sahayarayan, J. J., ... & Arun, M. (2025). Plant glycosides and glycosidases: classification, sources, and therapeutic insights in current medicine. Glycoconjugate Journal, 1-18. https://doi.org/10.1007/s10719-025-10180-3
Kumar, D., Soundhararajan, R., & Srinivasan, H. (2024). Screening the efficacy of platinum-based nanomaterial synthesized from Allium sativum to control plant pathogens. Journal of Materials Science: Materials in Engineering, 19(1), 29. https://doi.org/10.1186/s40712-024-00165-9
Kumar, J., Choudhary, K., Singh, H., Kumar, A., & Bagga, P. (2025). Molecular Approaches for Authentication and Identification of Medicinal Plants. Plant Molecular Biology Reporter, 43, 1006–1026. https://doi.org/10.1007/s11105-025-01557-7
Kumar, V., Sharma, R. K., Singh, S. K., Arora, K., Joshi, M. C., Rawat, P., & Singh, M. (2024). Morphology, chemical composition, and biological activities of Aconitum balfourii: a comprehensive review of important Himalayan and highly exploited medicinal plant. Vegetos, 37(5), 1690-1704. https://doi.org/10.1007/s42535-024-00995-0
Lavrinenko, Y., Plieva, A., Chaligava, O., Grozdov, D., Frontasyeva, M., Tkachenko, K., & Zinicovscaia, I. (2024). Elemental analysis of five medicinal plants species growing in North Ossetia using neutron activation analysis. Agronomy, 14(6), 1269. https://doi.org/10.3390/agronomy14061269
Lee, H., Koo, H. J., Lee, K. C., Song, Y., Joo, W. K., & Chae, C. J. (2024). Prediction and Classification of Phenol Contents in Cnidium officinale Makino Using a Stacking Ensemble Model in Climate Change Scenarios. Agronomy, 14(8), 1766. https://doi.org/10.3390/agronomy14081766
Li, Q., Huang, H., Fan, R., Ye, Q., Hu, Y., Wu, Z., ... & Wang, Y. (2024). Chromosome-level genome assembly of the tetraploid medicinal and natural dye plant Persicaria tinctoria. Scientific Data, 11, 1440. https://doi.org/10.1038/s41597-024-04317-6
Liu, J., Zhang, C., Qi, Q., Li, H., & Du, L. (2023). MixNet-CA: A novel disease identification method for Chinese roses based on MixNet-s. IEEE Access, 11, 97538-97548. https://doi.org/10.1109/ACCESS.2023.3313177
Liu, L., Zhan, X., Yang, X., Guan, X., Wu, R., Wang, Z., ... & Li, G. (2022). Cpsc: Conformal prediction with shrunken centroids for efficient prediction reliability quantification and data augmentation, a case in alternative herbal medicine classification with electronic nose. IEEE Transactions on Instrumentation and Measurement, 71, 1-11. https://doi.org/10.1109/TIM.2021.3134321
Malekroudi, M. G., Naghavi, M. R., & Ghaffari, M. R. (2025). Transcriptome mining of MicroRNAs involved in terpenoid biosynthesis and phylogenetic analysis in lamiaceae species. Iranian Journal of Science, 49(3), 585-604. https://doi.org/10.1007/s40995-024-01757-y
Mandava, R., & Sravanthi, G. L. (2026). Quantum Machine Learning Algorithms for Optimizing Complex Data Classification Tasks. Journal of Transactions in Systems Engineering, 4(1), 538-559. https://doi.org/10.15157/JTSE.2026.4.1.538-559
Manzoor, M., Ahmad, M., Zafar, M., Gillani, S. W., Shaheen, H., Pieroni, A., ... & Khaydarov, K. (2023). The local medicinal plant knowledge in Kashmir Western Himalaya: a way to foster ecological transition via community-centred health seeking strategies. Journal of Ethnobiology and Ethnomedicine, 19(1), 56. https://doi.org/10.1186/s13002-023-00631-2
Meenakshi, T. (2023). Automatic detection of diseases in leaves of medicinal plants using modified logistic regression algorithm. Wireless Personal Communications, 131(4), 2573-2597. https://doi.org/10.1007/s11277-023-10555-5
Moradi, N., Hassani, S. B., Nohooji, M. G., Riahi, H., & Shariatmadari, Z. (2024). Enhancement of Non-Enzymatic Antioxidant Compounds and Expression of Rosmarinic Acid Biosynthesis-Related Genes in Melissa officinalis Using Cyanobacteria. Iranian Journal of Science, 48(5), 1099-1111. https://doi.org/10.1007/s40995-024-01675-z
Nikule, H. A., Nikam, T. D., Borde, M. Y., Pawar, S. D., Shelke, D. B., & Nitnaware, K. M. (2024). Phytochemical and pharmacological insights into Salacia chinensis L.(Saptarangi): An underexplored important medicinal plant. Discover Plants, 1(1), 67. https://doi.org/10.1007/s44372-024-00067-2
Park, E. W., Hwang, J. H., Hwang, H. S., Yun, J. H., Hwang, S. Y., Yu, J., ... & Hwang, S. J. (2025). Effect of temperature and seedling cultivation period on the quality of plug seedlings of four medicinal plant. Horticulture, Environment, and Biotechnology, 66(2), 319-330. https://doi.org/10.1007/s13580-024-00659-7
Patil, S., & Sasikala, M. (2024). A weighted KNN model for identification of medicinal plant species. Multimedia Tools and Applications, 83(5), 13775-13789. https://doi.org/10.1007/s11042-023-15931-8
Pei, Y., Leng, L., Sun, W., Liu, B., Feng, X., Li, X., & Chen, S. (2024). Whole-genome sequencing in medicinal plants: current progress and prospect. Science China Life Sciences, 67(2), 258-273. https://doi.org/10.1007/s11427-022-2375-y
Ponsanti, K., Tangnorawich, B., Natphopsuk, S., Toommee, S., & Pechyen, C. (2024). Physicochemical aspects of platinum nanoparticles (PtNPs) from biological synthesis: influence of plant leaf based extracts as the reducing agent. International Journal of Precision Engineering and Manufacturing-Green Technology, 11(4), 1097-1113. https://doi.org/10.1007/s40684-023-00592-7
Praveen, S. P., Kamalrudin, M., Musa, M., Harita, U., Ayyappa, Y., & Nagamani, T. (2025). A unified AI framework for confidentiality preserving cyberattack detection in healthcare cyber physical networks. International Journal of Innovative Technology and Interdisciplinary Sciences, 8(3), 818-841. https://doi.org/10.15157/IJITIS.2025.8.3.818-841
Qian, J., Xu, P., Sun, Z., Liang, Y., Qian, G., & Wang, S. (2024). Efficient multifeature extraction and embedded array optimization for drift-calibrated multisensor odor detection system. IEEE Transactions on Instrumentation and Measurement, 73, 1-11. https://doi.org/10.1109/TIM.2024.3390699
Qian, J., Xu, P., Sun, Z., Liu, J., & Wang, J. (2024). A novel detection design via drift calibration and Chebyshev polynomial weighted unbalanced classifier design. IEEE Sensors Journal, 24(7), 27998 – 28006. https://doi.org/10.1109/JSEN.2024.3426964
Qian, J., Zhang, A., Lu, Y., Zhang, J., & Xu, P. (2023). A novel multisensor detection system design for odor classification. IEEE Sensors Journal, 23(16), 18624-18633. https://doi.org/10.1109/JSEN.2023.3292310
Qian, J., Zhang, C., Xu, P., Liu, J., & Huang, Y. (2025). A Multiple Sensors Detection Design via Embedded Array Optimization and Modified Chebyshev Polynomial Weighting Scheme. IEEE Transactions on Instrumentation and Measurement, 74, 2508710. https://doi.org/10.1109/TIM.2025.3544732
Raja, T., Ali, M. N., Shashi Kumar, M. E., Vishal, G. R., Manikanth, V., Mohammad Soudagar, M. E., ... & Alahmadi, T. A. (2024). Study on the characteristics of novel natural fiber extracted from Coccinia grandis plant vine: a novel material for engineering applications. The International Journal of Advanced Manufacturing Technology, 119(5), 1–8. https://doi.org/10.1007/s00170-024-13967-0
Raju, G. J, N., Srikanth, S., & Rao, J. C. S., & Sarita, P (2024). Study of regional variation of trace elements in Cascabela thevetia medicinal plant using PIXE. Journal of Radioanalytical and Nuclear Chemistry, 333(10), 4757-4763. https://doi.org/10.1007/s10967-024-09602-7
Rana, J., Sharma, A., Rana, J., & Sagar, A. (2024). Phytochemical analysis and biogenic synthesis of silver nanoparticles from Phlomis bracteosa Royle ex Benth. and screening of their antimicrobial and antioxidant potential. Micro and Nano Systems Letters, 12(1), 29. https://doi.org/10.1186/s40486-024-00218-w
S, P., K, P., Bommanaboina, Y., Meharaj, S., Tallam, V. S., & Vallabhaneni, S. C. (2025). Multi-Crop Plant Leaf Disease Detection Using Lite Models. International Journal of Advancement in Life Sciences Research, 8(2), 113-128. https://doi.org/https://doi.org/10.31632/ijalsr.2025.v08i02.009
Sasikaladevi, N., & Revathi, A. (2025). AyushNet-an IoT-based Mobile App for the Automatic Recognition of Medicinal Plants based on a deep residual neural network. Multimed Tools Appl 84, 11855-11869. https://doi.org/10.1007/s11042-024-19442-y
Shahhoseini, R., Sadeqifard, S., Azizi, M., & Asili, J. (2025). Changes in Chemical Composition of Tanacetum parthenium L. Essential Oil Under the Influence of Zinc Oxide Nanoparticle Concentration. BioNanoScience, 15(1), 163. https://doi.org/10.1007/s12668-024-01790-6
Shi, M., Tanaka, K., Rivera, M. P., Ngure, G. M., & Watanabe, K. N. (2024). Developing novel microsatellite markers for Kaempferia parviflora by microsatellite capture sequencing (MiCAPs). Agronomy, 14(9), 1984. https://doi.org/10.3390/agronomy14091984
Sirisha, U., Nakka, R., Hymavathi, J., Lalitha, S., Praveen, S., & Karras, D. (2025). Enhancing cassava leaf disease detection through traditional segmentation and attention-driven deep learning approaches. International Journal of Advancement in Life Sciences Research, 8(4), 138-157. https://doi.org/10.31632/ijalsr.2025.v08i04.011
Soleimanzadeh, L. S., & Irani, M. A. (2025). Structural, evolutionary, and immunogenicity insight into the application of microalgal Spirulina maxima asparaginase in medicinal and industrial purposes. Discover Applied Sciences, 7(5), 1-15. https://doi.org/10.1007/s42452-025-06959-6
Tamene, S., Negash, M., Makonda, F. B., & Chiwona-Karltun, L. (2024). Influence of socio-demographic factors on medicinal plant knowledge among three selected ethnic groups in south-central Ethiopia. Journal of Ethnobiology and Ethnomedicine, 20(1), 29. https://doi.org/10.1186/s13002-024-00672-1
Tan, M., Chu, J. S. C., & Swiger, D. R. (2025). Exploring the Medicinal Potential of Taraxacum Kok-Saghyz (TKS) Using Widely Targeted Metabolomics. Metabolites, 15(5), 306. https://doi.org/10.3390/metabo15050306
Thendral, R., & Aswin, R. (2024). Enhanced medicinal plant identification and classification using vision transformer model. In 2024 International Conference on Emerging Research in Computational Science (ICERCS) (pp. 1-7). IEEE. https://doi.org/10.1109/ICERCS63125.2024.10895180
Twum, F., Missah, Y. M., Oppong, S. O., & Ussiph, N. (2022). Textural analysis for medicinal plants identification using log Gabor filters. IEEE Access, 10, 83204-83220. https://doi.org/10.1109/ACCESS.2022.3196788
Wang, M., Yang, J., Hou, Z., Li, C., Niu, Z., Zhang, B., ... & Ding, X. (2025). The multi-chromosomal structure of mitogenomes provided new insights into the accurate authentication of medicinal Dendrobium species. BMC Plant Biology, 25(1), 202. https://doi.org/10.1186/s12870-025-06240-3
Wen, Q., Wei, W., Li, Y., Chen, D., Zhang, J., Li, Z., & Guo, D. A. (2025). Combination ATR-FTIR with Multiple Classification Algorithms for Authentication of the Four Medicinal Plants from Curcuma L. in Rhizomes and Tuberous Roots. Sensors, 25(1), 50. https://doi.org/10.3390/s25010050
Wiraswati, H. L., Pradini, G. W., Fauziah, N., Laelalugina, A., Arimdayu, A. R., Supandi, S., ... & Ma’ruf, I. F. (2024). Biological potential of eight medicinal plants collected in the restored landscape after mining in South Kalimantan. Discover Applied Sciences, 6(6), 308. https://doi.org/10.1007/s42452-024-05824-2
Xiao, M., Wang, T., Tang, C., He, M., Li, Y., & Li, X. (2024). Effects of different drying methods on amino acid metabolite content and quality of Ophiocordyceps sinensis by LC-MS/MS combined with multivariate statistical methods. Metabolites, 14(8), 459. https://doi.org/10.3390/metabo14080459
Xie, P., Wu, J., Lu, M., Tian, T., Wang, D., Luo, Z., ... & Zhu, D. (2024). Assembly and comparative analysis of the complete mitochondrial genome of Fritillaria ussuriensis Maxim.(Liliales: Liliaceae), an endangered medicinal plant. BMC genomics, 25(1), 773. https://doi.org/10.1186/s12864-024-10680-w
Yang, K., Dai, X., Maitikadir, Z., Zhang, H., Hao, H., & Yan, C. (2024). Comparative genome analysis of endophytic Bacillus amyloliquefaciens MR4: A potential biocontrol agent isolated from wild medicinal plant root tissue. Journal of Applied Genetics, 65(4), 907-923. https://doi.org/10.1007/s13353-024-00905-9
Yousaf, F., & Irfan, M. (2024). Plant-Mediated Synthesis of Yttrium Oxide Nanoparticles vs. Traditional Methods: Current Trends and Potential Applications. BioNanoScience, 14(4), 3889-3905. https://doi.org/10.1007/s12668-024-01480-3
Zaman, M. H., Rehman, F., Tahir, M. S., Faheem, M., & Jamil, Y. (2024). A study on the Effect of Preprocessing and normalization on classification of Plant samples in machine learning assisted Laser-Induced Breakdown Spectroscopy. Arabian Journal for Science and Engineering, 49(7), 10003-10019. https://doi.org/10.1007/s13369-024-08716-0
Zhao, L., Yan, H., Zhu, Y. H., Jia, H. Y., Han, Y. G., Zheng, X. K., ... & Feng, W. S. (2024). Assembly and characterization of the complete mitochondrial genome of Descurainia sophia: A medical plant producing glucosinolate. Discover Applied Sciences, 6(3), 129 pages. https://doi.org/10.1007/s42452-024-05775-8
Zhao, X., Wang, Z., Li, R., Liu, Y., Chen, Y., & Lu, C. (2024). Insights into the molecular mechanism underlying cold-induced flavonoids biosynthesis in callus of a Tibetan medicinal plant Saussurea laniceps. Plant Cell, Tissue and Organ Culture (PCTOC), 158(3), 46. https://doi.org/10.1007/s11240-024-02846-x
Zhou, R., Wang, Y., Zhen, L., Shen, B., Long, H., & Huang, L. (2025). Cultivar Differentiation and Origin Tracing of Panax quinquefolius Using Machine Learning Model-Driven Comparative Metabolomics. Foods, 14(8), 1340. https://doi.org/10.3390/foods14081340

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
















.