CaP Scaffold Loaded with Multi-Functional Gel for Bone Repair after Resection of Osteosarcoma
Abstract
Introduction: Osteosarcoma resection in clinical settings often causes largeosteopenia, and the cancer cells at the site of the lesion easily lead to the recurrence of osteosarcoma. Therefore, the treatment of osteosarcoma should not only induce bone regeneration, and remove tumor cells from the lesion site, but also avoid bacterial infection. Objective: This study is to develop a multifunctional scaffold that combines chitosan, black phosphorus nanoparticles, and copper ions in a biphasic calcium phosphate matrix to enhance bone regeneration, reduce tumor recurrence, and prevent infections following osteosarcoma surgery. Methods: Herein, a Biphasic Calcium Phosphate (BCP) porous scaffold was prepared by the pore-forming agent method, and the mixed gel of chitosan (CS), Black Phosphorus nanoparticles (BP), and Copper ion (Cu2+) was filled into the porous scaffold to form a composite scaffold (CS/BP/Cu-BCPs). CS/BP/Cu-BCPs were used to treat large bone defects caused by osteosarcoma. The composite scaffolds contain anticancer, bone promoting and bacteriostatic properties, which are mainly put down to the anticancer properties of BCP and BP, the osteoinductivity of BCP and Cu2+, and the antimicrobial effects of CS and Cu2+.Cell and antimicrobial tests demonstrated that the extract of CS/BP/Cu-BCPs displayed good biocompatibility, induced osteogenic differentiation of mesenchymal stem cells (BMSCs), and inhibited the growth of bacteria. Results: In vivo, experiments showed CS/BP/Cu-BCPs had obvious anti-tumor and osteogenic effects. Taken together, the CS/BP/Cu-BCPs prepared in this study possessed good functions such as oncotherapy, bone regeneration, and postoperative anti-infection, and were expected to become a simple therapeutic material for osteosarcoma resection. We investigated the in vitro antibacterial, in vivo osteogenic, and antitumor capabilities of CaP scaffolds loaded with multi-functional gels. Compared with the control group, CaP scaffolds loaded with multi-functional gel showed significant antibacterial, bone-promoting, and anti-tumor effects. Conclusion: The contribution of this study was to confirm that CaP scaffolds loaded with multi-functional gels could eliminate osteosarcoma while repairing critical bone defects and have good antibacterial potential. These results suggested that CaP scaffolds loaded with multifunctional gels may be a potential candidate for repairing bone defects caused by osteosarcoma resection.
Downloads
References
Aksoy, I., Kucukkececi, H., Sevgi, F., Metin, O., & Hatay Patir, I. (2020). Photothermal antibacterial and antibiofilm activity of black phosphorus/gold nanocomposites against pathogenic bacteria. ACS applied materials & interfaces, 12(24), 26822-26831. https://doi.org/10.1021/acsami.0c02524
Bohner, M., Santoni, B. L. G., & Döbelin, N. (2020). β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta biomaterialia, 113, 23-41. https://doi.org/10.1016/j.actbio.2020.06.022
Bouler, J. M., Pilet, P., Gauthier, O., & Verron, E. (2017). Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta biomaterialia, 53, 1-12. https://doi.org/10.1016/j.actbio.2017.01.076
Cheng, R. X., Tian, F. Y., Zhang, Y. Q., Chen, K., Zhu, Q. J., & Tao, Z. (2020). TMeQ [6]-based supramolecular frameworks assembled through outer surface interactions and their potential applications. Journal of Materials Science, 55, 16497-16509. https://doi.org/10.1007/s10853-020-05180-7
da Silva, D. A., De Luca, A., Squitti, R., Rongioletti, M., Rossi, L., Machado, C. M., & Cerchiaro, G. (2022). Copper in tumors and the use of copper-based compounds in cancer treatment. Journal of inorganic biochemistry, 226, 111634. https://doi.org/10.1016/j.jinorgbio.2021.111634
Dadi, R., Azouani, R., Traore, M., Mielcarek, C., & Kanaev, A. (2019). Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. Materials Science and Engineering: C, 104, 109968. https://doi.org/10.1016/j.msec.2019.109968
Dana, P. M., Hallajzadeh, J., Asemi, Z., Mansournia, M. A., & Yousefi, B. (2021). Chitosan applications in studying and managing osteosarcoma. International journal of biological macromolecules, 169, 321-329. https://doi.org/10.1016/j.ijbiomac.2020.12.058
Deng, K., Chen, H., Dou, W., Cai, Q., Wang, X., Wang, S., & Wang, D. (2022). Preparation and characterization of porous HA/β-TCP biphasic calcium phosphate derived from butterfish bone. Materials Technology, 37(10), 1388-1395. https://doi.org/10.1080/10667857.2021.1950886
Duong, H. V., Chau, T. T. L., Dang, N. T. T., Vanterpool, F., Salmeron-Sanchez, M., Lizundia, E., ... & Nguyen, T. D. (2018). Biocompatible chitosan-functionalized upconverting nanocomposites. ACS omega, 3(1), 86-95. https://doi.org/10.1021/acsomega.7b01355
Fan, S., Wan, Y., Zhao, Z., Wang, H., & Ji, Z. (2022). Biological evaluation of polydopamine and chitosan composite coatings on the 3D printed porous biphasic calcium phosphate scaffold. Ceramics International, 48(19), 27942-27956. https://doi.org/10.1016/j.ceramint.2022.06.098
Feng, C., Wu, Y., Li, Q., He, T., Cao, Q., Li, X., ... & Zhang, X. (2022). A novel hollow‐tube‐biphasic‐whisker‐modified calcium phosphate ceramics with simultaneously enhanced mechanical strength and osteogenic activity. Advanced Functional Materials, 32(44), 2204974. https://doi.org/10.1002/adfm.202204974
Gomes, S., Vichery, C., Descamps, S., Martinez, H., Kaur, A., Jacobs, A., ... & Renaudin, G. (2018). Cu-doping of calcium phosphate bioceramics: From mechanism to the control of cytotoxicity. Acta Biomaterialia, 65, 462-474. https://doi.org/10.1016/j.actbio.2017.10.028
Haurat, M., Tassaing, T., & Dumon, M. (2022). FTIR in situ measurement of swelling and CO2 sorption in acrylic polymers at high CO2 pressures. The Journal of Supercritical Fluids, 182, 105534. https://doi.org/10.1016/j.supflu.2022.105534
He, M., Zhu, C., Sun, D., Liu, Z., Du, M., Huang, Y., ... & Zhang, L. (2022). Layer-by-layer assembled black phosphorus/chitosan composite coating for multi-functional PEEK bone scaffold. Composites Part B: Engineering, 246, 110266. https://doi.org/10.1016/j.compositesb.2022.110266
Huang, H., Yang, A., Li, J., Sun, T., Yu, S., Lu, X., ... & Weng, J. (2022). Preparation of multigradient hydroxyapatite scaffolds and evaluation of their osteoinduction properties. Regenerative Biomaterials, 9, rbac001. https://doi.org/10.1093/rb/rbac001
Ingley, K. M., Maleddu, A., Grange, F. L., Gerrand, C., Bleyer, A., Yasmin, E., ... & Strauss, S. J. (2022). Current approaches to management of bone sarcoma in adolescent and young adult patients. Pediatric Blood & Cancer, 69(2), e29442-e29442. https://doi.org/10.1002/pbc.29442
Jeon, S., Lee, J. H., Jang, H. J., Lee, Y. B., Kim, B., Kang, M. S., ... & Han, D. W. (2021). Spontaneously promoted osteogenic differentiation of MC3T3-E1 preosteoblasts on ultrathin layers of black phosphorus. Materials Science and Engineering: C, 128, 112309. https://doi.org/10.1016/j.msec.2021.112309
Kansara, M., Teng, M. W., Smyth, M. J., & Thomas, D. M. (2014). Translational biology of osteosarcoma. Nature Reviews Cancer, 14(11), 722-735. https://doi.org/10.1038/nrc3838
Karageorgiou, V., & Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26(27), 5474-5491. https://doi.org/10.1016/j.biomaterials.2005.02.002
Kaweeteerawat, C., Chang, C. H., Roy, K. R., Liu, R., Li, R., Toso, D., ... & Godwin, H. A. (2015). Cu nanoparticles have different impacts in Escherichia coli and Lactobacillus brevis than their microsized and ionic analogues. ACS nano, 9(7), 7215-7225. https://doi.org/10.1021/acsnano.5b02021
Koski, C., Vu, A. A., & Bose, S. (2020). Effects of chitosan-loaded hydroxyapatite on osteoblasts and osteosarcoma for chemopreventative applications. Materials Science and Engineering: C, 115, 111041. https://doi.org/10.1016/j.msec.2020.111041
Lazarevic, M., Petrovic, S., Pierfelice, T. V., Ignjatovic, N., Piattelli, A., Vlajic Tovilovic, T., & Radunovic, M. (2023). Antimicrobial and Osteogenic Effects of Collagen Membrane Decorated with Chitosan–Nano-Hydroxyapatite. Biomolecules, 13(4), 579. https://doi.org/10.3390/biom13040579
Li, K., Xia, C., Qiao, Y., & Liu, X. (2019). Dose-response relationships between copper and its biocompatibility/antibacterial activities. Journal of Trace Elements in Medicine and Biology, 55, 127-135. https://doi.org/10.1016/j.jtemb.2019.06.015
Liang, Y., Li, Z., Huang, Y., Yu, R., & Guo, B. (2021). Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing. ACS nano, 15(4), 7078-7093. https://doi.org/10.1021/acsnano.1c00204
Lin, Z., Cao, Y., Zou, J., Zhu, F., Gao, Y., Zheng, X., ... & Wu, T. (2020). Improved osteogenesis and angiogenesis of a novel copper ions doped calcium phosphate cement. Materials Science and Engineering: C, 114, 111032. https://doi.org/10.1016/j.msec.2020.111032
Liu, W., Zhang, Y., Zhang, Y., & Dong, A. (2020). Black phosphorus nanosheets counteract bacteria without causing antibiotic resistance. Chemistry–A European Journal, 26(11), 2478-2485. https://doi.org/10.1002/chem.201905134
Luetke, A., Meyers, P. A., Lewis, I., & Juergens, H. (2014). Osteosarcoma treatment–where do we stand? A state of the art review. Cancer treatment reviews, 40(4), 523-532. https://doi.org/10.1016/j.ctrv.2013.11.006
Ma, S., Wei, Y., Sun, R., Xu, H., Liu, X., Wang, Y., ... & Huang, D. (2022). Calcium phosphate bone cements incorporated with black phosphorus nanosheets enhanced osteogenesis. ACS Biomaterials Science & Engineering, 9(1), 292-302. https://doi.org/10.1021/acsbiomaterials.2c00742
Maqbool, M., Nawaz, Q., Atiq Ur Rehman, M., Cresswell, M., Jackson, P., Hurle, K., ... & Boccaccini, A. R. (2021). Synthesis, characterization, antibacterial properties, and in vitro studies of selenium and strontium co-substituted hydroxyapatite. International Journal of Molecular Sciences, 22(8), 4246. https://doi.org/10.3390/ijms22084246
Mir, T. U. G., Shukla, S., Malik, A. Q., Singh, J., & Kumar, D. (2023). Microwave-assisted synthesis of N-doped carbon quantum dots for detection of methyl orange in saffron. Chemical Papers, 77(7), 3641-3649. https://doi.org/10.1007/s11696-023-02726-2
Pan, T., Fu, W., Xin, H., Geng, S., Li, Z., Cui, H., ... & Yu, X. F. (2020). Calcium phosphate mineralized black phosphorous with enhanced functionality and anticancer bioactivity. Advanced Functional Materials, 30(38), 2003069. https://doi.org/10.1002/adfm.202003069
Qiu, M., Singh, A., Wang, D., Qu, J., Swihart, M., Zhang, H., & Prasad, P. N. (2019). Biocompatible and biodegradable inorganic nanostructures for nanomedicine: silicon and black phosphorus. Nano Today, 25, 135-155. https://doi.org/10.1016/j.nantod.2019.02.012
Ritter, J., & Bielack, S. S. (2010). Osteosarcoma. Annals of oncology, 21, vii320-vii325. https://doi.org/10.1093/annonc/mdq276
Rivera, L. R., Cochis, A., Biser, S., Canciani, E., Ferraris, S., Rimondini, L., & Boccaccini, A. R. (2021). Antibacterial, pro-angiogenic and pro-osteointegrative zein-bioactive glass/copper based coatings for implantable stainless steel aimed at bone healing. Bioactive materials, 6(5), 1479-1490. https://doi.org/10.1016/j.bioactmat.2020.11.001
Rustom, L. E., Boudou, T., Lou, S., Pignot-Paintrand, I., Nemke, B. W., Lu, Y., ... & Johnson, A. J. W. (2016). Micropore-induced capillarity enhances bone distribution in vivo in biphasic calcium phosphate scaffolds. Acta biomaterialia, 44, 144-154. https://doi.org/10.1016/j.actbio.2016.08.025
Sanuki‐Fujimoto, N., Takeda, A., Amemiya, A., Ofuchi, T., Ono, M., Yamagami, R., ... & Shigematsu, N. (2008). Pattern of tumor recurrence in initially nonmetastatic breast cancer patients: distribution and frequency of metastases at unusual sites. Cancer: Interdisciplinary International Journal of the American Cancer Society, 113(4), 677-682. https://doi.org/10.1002/cncr.23612
Sendemir‐Urkmez, A., & Jamison, R. D. (2007). The addition of biphasic calcium phosphate to porous chitosan scaffolds enhances bone tissue development in vitro. Journal of Biomedical Materials Research Part A, 81(3), 624-633. https://doi.org/10.1002/jbm.a.31010
Shi, C., Hou, X., Zhao, D., Wang, H., Guo, R., & Zhou, Y. (2022). Preparation of the bioglass/chitosan-alginate composite scaffolds with high bioactivity and mechanical properties as bone graft materials. Journal of the Mechanical Behavior of Biomedical Materials, 126, 105062. https://doi.org/10.1016/j.jmbbm.2021.105062
Shi, Y., Li, Y., Huang, C., Xu, Y., & Xu, Y. (2023). Electrogenerated copper selenide with positive charge to efficiently capture and combat drug-resistant bacteria for wound healing. Journal of Colloid and Interface Science, 634, 852-863. https://doi.org/10.1016/j.jcis.2022.12.094
Song, H. Q., Fan, Y., Hu, Y., Cheng, G., & Xu, F. J. (2021). Polysaccharide–peptide conjugates: a versatile material platform for biomedical applications. Advanced Functional Materials, 31(6), 2005978. https://doi.org/10.1002/adfm.202005978
Song, H., Ji, Y., Zhu, Y., Xia, J., Hu, C., Jin, Y., ... & Dai, J. (2023). One-pot synthesized nano-heterostructure with dual-modal catalytic ROS generation ability for high-metastatic orthotopic osteosarcoma therapy. Carbon, 204, 196-210. https://doi.org/10.1016/j.carbon.2022.12.053
Tang, X., Mao, L., Liu, J., Yang, Z., Zhang, W., Shu, M., ... & Fang, B. (2016). Fabrication, characterization and cellular biocompatibility of porous biphasic calcium phosphate bioceramic scaffolds with different pore sizes. Ceramics International, 42(14), 15311-15318. https://doi.org/10.1016/j.ceramint.2016.06.172
Thangavelu, M., Adithan, A., Peter, J. S. J., Hossain, M. A., Kim, N. S., Hwang, K. C., ... & Kim, J. H. (2020). Ginseng compound K incorporated porous Chitosan/biphasic calcium phosphate composite microsphere for bone regeneration. International journal of biological macromolecules, 146, 1024-1029. https://doi.org/10.1016/j.ijbiomac.2019.09.228
Waibel, K. H., Haney, B., Moore, M., Whisman, B., & Gomez, R. (2011). Safety of chitosan bandages in shellfish allergic patients. Military medicine, 176(10), 1153-1156. https://doi.org/10.7205/MILMED-D-11-00150
Wu, J., Feng, C., Wang, M., Wu, H., Zhu, X., Li, X., ... & Zhang, X. (2022). Whisker of biphasic calcium phosphate ceramics: Osteo-immunomodulatory behaviors. Nano Research, 15(10), 9169-9182. https://doi.org/10.1007/s12274-022-4591-0
Wu, Y., Cheng, M., Jiang, Y., Zhang, X., Li, J., Zhu, Y., & Yao, Q. (2024). Calcium-based biomaterials: Unveiling features and expanding applications in osteosarcoma treatment. Bioactive Materials, 32, 385-399. https://doi.org/10.1016/j.bioactmat.2023.10.008
Xiao, D., Yang, F., Zhao, Q., Chen, S., Shi, F., Xiang, X., ... & Feng, G. (2018). Fabrication of a Cu/Zn co-incorporated calcium phosphate scaffold-derived GDF-5 sustained release system with enhanced angiogenesis and osteogenesis properties. RSC advances, 8(52), 29526-29534. https://doi.org/10.1039/c8ra05441j
Yang, B., Yin, J., Chen, Y., Pan, S., Yao, H., Gao, Y., & Shi, J. (2018). 2D‐black‐phosphorus‐reinforced 3D‐printed scaffolds: a stepwise countermeasure for osteosarcoma. Advanced Materials, 30(10), 1705611. https://doi.org/10.1002/adma.201705611
Yao, G., Lei, J., Zhang, W., Yu, C., Sun, Z., Zheng, S., & Komarneni, S. (2019). Antimicrobial activity of X zeolite exchanged with Cu 2+ and Zn 2+ on Escherichia coli and Staphylococcus aureus. Environmental Science and Pollution Research, 26, 2782-2793. https://doi.org/10.1007/s11356-018-3750-z
Zhang, L., Fang, H., Zhang, K., & Yin, J. (2018). Homologous sodium alginate/chitosan-based scaffolds, but contrasting effect on stem cell shape and osteogenesis. ACS applied materials & interfaces, 10(8), 6930-6941. https://doi.org/10.1021/acsami.7b18859
Zhang, W., Chang, Q., Xu, L., Li, G., Yang, G., Ding, X., ... & Jiang, X. (2016). Graphene oxide‐copper Nanocomposite‐coated porous CaP scaffold for vascularized bone regeneration via activation of Hif‐1α. Advanced healthcare materials, 5(11), 1299-1309. https://doi.org/10.1002/adhm.201500824
Zhou, M., Wu, X., Luo, J., Yang, G., Lu, Y., Lin, S., ... & Jiang, X. (2021). Copper peptide-incorporated 3D-printed silk-based scaffolds promote vascularized bone regeneration. Chemical Engineering Journal, 422, 130147. https://doi.org/10.1016/j.cej.2021.130147
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.