Design, Development and Characterization of Transdermal Patch of Meclizine for Motion Sickness
Abstract
The study aimed to develop and characterize a transdermal patch of meclizine for the treatment of motion sickness. Eight formulations were prepared and evaluated for drug content, thickness, weight variation, folding endurance, in vitro drug release, and patch adhesion. Among all formulations, MTP8 demonstrated superior performance, showing the highest drug content (99.5%), thickness (0.30 mm), weight variation (1.7%), folding endurance (335), in vitro drug release at 24 hours (71%), and patch adhesion (1.1 N/cm²). The findings suggest that MTP8 may be a promising candidate for a meclizine transdermal patch for motion sickness. Its high drug content and sustained drug release profile indicate potential for consistent and effective drug delivery. In addition, the patch’s mechanical strength and adhesion properties suggest good durability and reliable skin adherence. Further studies, including in vivo evaluations, are warranted to confirm these results and to assess the safety and efficacy of the patch in clinical settings. In conclusion, MTP8 shows considerable potential as a transdermal patch for motion sickness, offering advantages in drug content, drug release, and overall patch characteristics. Future research should focus on optimizing the formulation and conducting clinical trials to validate its effectiveness and safety in the treatment of motion sickness.
Downloads
References
Akombaetwa, N., Ilangala, A. B., Thom, L., Memvanga, P. B., Witika, B. A., & Buya, A. B. (2023). Current advances in lipid nanosystems intended for topical and transdermal drug delivery applications. Pharmaceutics, 15(2), 656. https://doi.org/10.3390/pharmaceutics15020656
Arora, P., & Mukherjee, B. (2002). Design, development, physicochemical, and in vitro and in vivo evaluation of transdermal patches containing diclofenac diethylammonium salt. Journal of Pharmaceutical Sciences, 91(9), 2076-2089. https://doi.org/10.1002/jps.10200
Bácskay, I., Hosszú, Z., Budai, I., Ujhelyi, Z., Fehér, P., Kósa, D., ... & Pető, Á. (2023). Formulation and evaluation of transdermal patches containing BGP-15. Pharmaceutics, 16(1), 36. https://doi.org/10.3390/pharmaceutics16010036
Bakhrushina, E. O., Shumkova, M. M., Avdonina, Y. V., Ananian, A. A., Babazadeh, M., Pouya, G.,…... & Krasnyuk, I. I. (2025). Transdermal drug delivery systems: methods for enhancing skin permeability and their evaluation. Pharmaceutics, 17(7), 936. https://doi.org/10.3390/pharmaceutics17070936
Balaguer-Fernández, C., Padula, C., Femenía-Font, A., Merino, V., Santi, P., & López-Castellano, A. (2010). Development and evaluation of occlusive systems employing polyvinyl alcohol for transdermal delivery of sumatriptan succinate. Drug Delivery, 17(2), 83-91. https://doi.org/10.3109/10717540903509019
Bülbül, E. Ö, Husseın, H. A., Yeğen, G., Okur, M. E., Okur, N. Ü., & Aksu, N. B. (2022). Preparation and in vitro–in vivo evaluation of QbD based acemetacin loaded transdermal patch formulations for rheumatic diseases. Pharmaceutical Development and Technology, 27(10), 1016-1026. https://doi.org/10.1080/10837450.2022.2145308
Carmona-Moran, C. A., Zavgorodnya, O., Penman, A. D., Kharlampieva, E.,…... & Wick, T. M. (2016). Development of gellan gum containing formulations for transdermal drug delivery: Component evaluation and controlled drug release using temperature responsive nanogels. International Journal of Pharmaceutics, 509(1-2), 465-476. https://doi.org/10.1016/j.ijpharm.2016.05.062
Cherukuri, S., Batchu, U. R., Mandava, K., Cherukuri, V., & Ganapuram, K. R. (2017). Formulation and evaluation of transdermal drug delivery of topiramate. International Journal of Pharmaceutical investigation, 7(1), 10-17. https://doi.org/10.4103/jphi.JPHI_35_16
Chien, Y. W., & Liu, J. C. (1986). Transdermal drug delivery systems. Journal of Biomaterials Applications, 1(2), 183–206. https://doi.org/10.1177/088532828600100202
Dahl, E., Offer‐Ohlsen, D., Lillevold, P. E., & Sandvik, L. (1984). Transdermal scopolamine, oral meclizine, and placebo in motion sickness. Clinical Pharmacology & Therapeutics, 36(1), 116-120. https://doi.org/10.1038/clpt.1984.148
Ding, X., Costa, G., Hernandez-Serrano, A. I., Stantchev, R. I., Nurumbetov, G., Haddleton, D. M., & Pickwell-MacPherson, E. (2023). Quantitative evaluation of transdermal drug delivery patches on human skin with in vivo THz-TDS. Biomedical Optics Express, 14(3), 1146-1158. https://doi.org/10.1364/BOE.473097
Dubey, V., Mishra, D., Nahar, M., & Jain, N. K. (2008). Elastic liposomes mediated transdermal delivery of an anti-jet lag agent: preparation, characterization and in vitro human skin transport study. Current Drug Delivery, 5(3), 199-206. https://doi.org/10.2174/156720108784911730
Fan, M., Liu, W., Zhao, L., Nie, L., & Wang, Y. (2024). Engineering nanosystems for transdermal delivery of antihypertensive drugs. Pharmaceutical Development and Technology, 29(3), 265-279. https://doi.org/10.1080/10837450.2024.2324981
Hiremath, S. S. P., Reddy, J. J., & Jamakandi, V. G. (2018). Design and evaluation of transdermal patches of timolol maleate. Current Drug Delivery, 15(5), 658-663. https://doi.org/10.2174/1567201814666171002142444
Hussain, A., Samad, A., Ramzan, M., Ahsan, M. N., Ur Rehman, Z., & Ahmad, F. J. (2016). Elastic liposome-based gel for topical delivery of 5-fluorouracil: in vitro and in vivo investigation. Drug Delivery, 23(4), 1115-1129. https://doi.org/10.3109/10717544.2014.976891
Jacob, S., Abdullahi, J. O., Usman, S., Boddu, S. H. S., Khan, S. N., Saad, M. A., & Nair, A. B. (2025). Preparation and Evaluation of Tadalafil-Loaded Nanoemulgel for Transdermal Delivery in Cold-Induced Vasoconstriction: A Potential Therapy for Raynaud’s Phenomenon. Pharmaceutics, 17(5), 596. https://doi.org/10.3390/pharmaceutics17050596
Jiang, Y., Murnane, K. S., Blough, B. E., & Banga, A. K. (2020). Transdermal delivery of the free base of 3-fluoroamphetamine: in vitro skin permeation and irritation potential. AAPS PharmSciTech, 21(3), 109. https://doi.org/10.1208/s12249-020-01649-5
Kandimalla, K., Kanikkannan, N., Andega, S., & Singh, M. (1999). Effect of fatty acids on the permeation of melatonin across rat and pig skin in-vitro and on the transepidermal water loss in rats in-vivo. Journal of Pharmacy and Pharmacology, 51(7), 783-790. https://doi.org/10.1211/0022357991773140
Kanikkannan, N., Andega, S., Burton, S., Babu, R. J., & Singh, M. (2004). Formulation and in vitro evaluation of transdermal patches of melatonin. Drug Development and Industrial Pharmacy, 30(2), 205-212. https://doi.org/10.1081/ddc-120028716
Karve, T., & Banga, A. K. (2024). Comparative evaluation of physical and chemical enhancement techniques for transdermal delivery of linagliptin. International Journal of Pharmaceutics, 654, 123992. https://doi.org/10.1016/j.ijpharm.2024.123992
Madan, J. R., Argade, N. S., & Dua, K. (2015). Formulation and evaluation of transdermal patches of donepezil. Recent Patents on Drug Delivery & Formulation, 9(1), 95-103. http://dx.doi.org/10.2174/1872211308666141028213615
Manosroi, A., Khositsuntiwong, N., Götz, F., Werner, R. G., & Manosroi, J. (2009). Transdermal enhancement through rat skin of luciferase plasmid DNA loaded in elastic nanovesicles: Biological recognition and interactions of liposomes. Journal of Liposome Research, 19(2), 91-98. https://doi.org/10.1080/08982100902731523
Mohan, N., Nair, R. P. A. N., & Narayanasamy, D. (2025). Nanoparticle‐Integrated Transdermal Patches: A Platform for Next‐Generation Drug Delivery. Drug Development Research, 86(7), e70164. https://doi.org/10.1002/ddr.70164
Momin, Z., B, P. K., K, V. B., & Kumar, L. (2025). Formulation, characterization, and evaluation of transdermal patches of ranolazine for chronic angina pectoris. Naunyn-Schmiedeberg's Archives of Pharmacology. https://doi.org/10.1007/s00210-025-04504-1
Mu, H., Holm, R., & Müllertz, A. (2013). Lipid-based formulations for oral administration of poorly water-soluble drugs. International Journal of Pharmaceutics, 453(1), 215-224. https://doi.org/10.1016/j.ijpharm.2013.03.054
Nandi, S., & Mondal, S. (2022). Fabrication and evaluation of matrix type novel transdermal patch loaded with tramadol hydrochloride. Turkish Journal of Pharmaceutical Sciences, 19(5), 572-582. https://doi.org/10.4274/tjps.galenos.2021.43678
Nava, G., Piñón, E., Mendoza, L., Mendoza, N., Quintanar, D., & Ganem, A. (2011). Formulation and in vitro, ex vivo and in vivo evaluation of elastic liposomes for transdermal delivery of ketorolac tromethamine. Pharmaceutics, 3(4), 954-970. https://doi.org/10.3390/pharmaceutics3040954
Panchaxari, D. M., Pampana, S., Pal, T., Devabhaktuni, B., & Aravapalli, A. K. (2013). Design and characterization of diclofenac diethylamine transdermal patch using silicone and acrylic adhesives combination. DARU Journal of Pharmaceutical Sciences, 21(1), 6. https://doi.org/10.1186/2008-2231-21-6
Pandey, P. C., Shukla, S., Skoog, S. A., Boehm, R. D., & Narayan, R. J. (2019). Current advancements in transdermal biosensing and targeted drug delivery. Sensors, 19(5), 1028. Patel, S. R., Zhong, H., Sharma, A., & Kalia, Y. N. (2007). In vitro and in vivo evaluation of the transdermal iontophoretic delivery of sumatriptan succinate. European Journal of Pharmaceutics and Biopharmaceutics, 66(2), 296-301. https://doi.org/10.1016/j.ejpb.2006.11.001
Patel, S. R., Zhong, H., Sharma, A., & Kalia, Y. N. (2007). In vitro and in vivo evaluation of the transdermal iontophoretic delivery of sumatriptan succinate. European Journal of Pharmaceutics and Biopharmaceutics, 66(2), 296–301. https://doi.org/10.1016/j.ejpb.2006.11.001
Prajapati, S. T., Patel, C. G., & Patel, C. N. (2011). Formulation and evaluation of transdermal patch of repaglinide. International Scholarly Research Notices, 2011(1), 651909. https://doi.org/10.5402/2011/651909
Puri, A., Murnane, K. S., Blough, B. E., & Banga, A. K. (2017). Effects of chemical and physical enhancement techniques on transdermal delivery of 3-fluoroamphetamine hydrochloride. International Journal of Pharmaceutics, 528(1-2), 452-462. https://doi.org/10.1016/j.ijpharm.2017.06.041
Sánchez, M. B., Callaghan, M. J., Selfe, J., Twigg, M., & Smith, T. (2024). Efficacy of transdermal anti-inflammatory patches for musculoskeletal pain: A systematic review and meta-analysis. Pain Management, 14(10-11), 557-569. https://doi.org/10.1080/17581869.2024.2421153
Shabbir, M., Ali, S., Farooq, M., Adnan, S., Yousaf, M., Idrees, A., ... & Shahid, N. (2016). Formulation factors affecting in vitro and ex vivo permeation of bisoprolol fumarate from a matrix transdermal patch. Advances in Polymer Technology, 35(3), 237-247. https://doi.org/10.1002/adv.21546
Singh, J. P., Saini, G., Singh, B., & Tiwari, G. (2025). Nano-Formulation Approaches to Enhance Transdermal Drug Delivery-An Updated Review of Nanovesicular Carrier “Transethosomes”. Pharmaceutical Nanotechnology, 13(4), 739-757. https://doi.org/10.2174/0122117385306281240427073651
Steenekamp, E. M., Liebenberg, W., Lemmer, H. J., & Gerber, M. (2024). Formulation and Ex Vivo Evaluation of Ivermectin Within Different Nano-Drug Delivery Vehicles for Transdermal Drug Delivery. Pharmaceutics, 16(11), 1466. https://doi.org/10.3390/pharmaceutics16111466
Thakur, G., Singh, A., & Singh, I. (2016). Formulation and evaluation of transdermal composite films of chitosan-montmorillonite for the delivery of curcumin. International Journal of Pharmaceutical Investigation, 6(1), 23-31. https://doi.org/10.4103/2230-973X.176468
Vaseem, R. S., D’cruz, A., Shetty, S., Vardhan, A., R, S. S., Marques, S. M., & Kumar, L. (2024). Transdermal drug delivery systems: A focused review of the physical methods of permeation enhancement. Advanced Pharmaceutical Bulletin, 14(1), 67–85. https://doi.org/10.34172/apb.2024.018
Yadav, A. R., Shinde, S. A., Sutar, S. B., Arvindekar, S. A., & Syukri, D. M. (2025). Challenges in Formulating Transdermal Systems for Treating Chronic Skin Infections. Current Opinion in Pharmacology, 102540. https://doi.org/10.1016/j.coph.2025.102540
Yaqoob, A., Ahmad, M., Mahmood, A., & Sarfraz, R. M. (2016). Preparation, in vitro and in vivo characterization of hydrophobic patches of a highly water soluble drug for prolonged plasma half life: Effect of permeation enhancers. Acta Poloniae Pharmaceutica, 73(6), 1639–1648. https://europepmc.org/article/med/29634120

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
















.