Development of a Postoperative Rehabilitation Training Device for Patients with Upper and Lower Limb Muscular Atrophy

Abstract

Objective: To develop a rehabilitation training device applicable to upper limb and lower limb muscle atrophy in postoperative patients, early postoperative rehabilitation intervention, reasonable rehabilitation training, and exercise to reduce muscle atrophy, and to help improve the ability of postoperative patients to move independently. Methods: The upper limb rehabilitation training device is comprised of a bed body and a sliding mechanism, with the sliding mechanism having a fixed component, a telescopic component, a snap-on component, and a power component. The sliding mechanism on the bed body moves back and forth, and the corresponding exercise can be performed in any position on the bed body. The lower limb rehabilitation training device comprises a base plate, a fixing box, and a seat, with the fixing box's structure comprising a fixation frame, a moving box, a pedal, a pressing block, an activity block, and other devices. The upper limb training device can ensure the safety of patients and accompanying personnel, while exercising multiple parts of the patient's muscle groups, and increasing the device's applicability; the lower limb training device can be positioned in time; and the height of the pedal can be adjusted to solve the problem of the training device's rebound force accidentally shocking the lower limbs and the inconvenience of the pedal height, which afflict patients. Conclusion: The use of rehabilitation training device training, leads to early recovery of postoperative patients' independent activities, improvement of patients' postoperative self-care ability, promotion of patients' postoperative rehabilitation, enhancement of patients' quality of life, and a decrease in postoperative complications.

Keywords: muscular dystrophy, rehabilitation training, postoperative training, training device

Downloads

Download data is not yet available.

References

Agostini, P., Lugg, S. T., Adams, K., Vartsaba, N., Kalkat, M. S., Rajesh, P. B., Steyn, R. S., Naidu, B., Rushton, A., & Bishay, E. (2017). Postoperative pulmonary complications and rehabilitation requirements following lobectomy: a propensity score matched study of patients undergoing video-assisted thoracoscopic surgery versus thoracotomy†. Interact Cardiovasc Thorac Surg, 24(6), 931-937. https://doi.org/10.1093/icvts/ivx002
Avery, K. N. L., Blazeby, J. M., Chalmers, K. A., Batchelor, T. J. P., Casali, G., Internullo, E., Krishnadas, R., Evans, C., & West, D. (2020). Impact on Health-Related Quality of Life of Video-Assisted Thoracoscopic Surgery for Lung Cancer. Ann Surg Oncol, 27(4), 1259-1271. https://doi.org/10.1245/s10434-019-08090-4
Batchelor, T. J. P., Rasburn, N. J., Abdelnour-Berchtold, E., Brunelli, A., Cerfolio, R. J., Gonzalez, M., Ljungqvist, O., Petersen, R. H., Popescu, W. M., Slinger, P. D., & Naidu, B. (2019). Guidelines for enhanced recovery after lung surgery: recommendations of the Enhanced Recovery After Surgery (ERAS®) Society and the European Society of Thoracic Surgeons (ESTS). Eur J Cardiothorac Surg, 55(1), 91-115. https://doi.org/10.1093/ejcts/ezy301
Bye, A., Sjøblom, B., Wentzel-Larsen, T., Grønberg, B. H., Baracos, V. E., Hjermstad, M. J., Aass, N., Bremnes, R. M., Fløtten, Ø., & Jordhøy, M. (2017). Muscle mass and association to quality of life in non-small cell lung cancer patients. J Cachexia Sarcopenia Muscle, 8(5), 759-767. https://doi.org/10.1002/jcsm.12206
Campbell, K. L., Winters-Stone, K. M., Wiskemann, J., May, A. M., Schwartz, A. L., Courneya, K. S., Zucker, D. S., Matthews, C. E., Ligibel, J. A., Gerber, L. H., Morris, G. S., Patel, A. V., Hue, T. F., Perna, F. M., & Schmitz, K. H. (2019). Exercise Guidelines for Cancer Survivors: Consensus Statement from International Multidisciplinary Roundtable. Med Sci Sports Exerc, 51(11), 2375-2390. https://doi.org/10.1249/mss.0000000000002116
Cavalheri, V., & Granger, C. L. (2020). Exercise training as part of lung cancer therapy. Respirology, 25 Suppl 2, 80-87. https://doi.org/10.1111/resp.13869
Che, Y. J., Qian, Z., Chen, Q., Chang, R., Xie, X., & Hao, Y. F. (2023). Effects of rehabilitation therapy based on exercise prescription on motor function and complications after hip fracture surgery in elderly patients. BMC Musculoskelet Disord, 24(1), 817. https://doi.org/10.1186/s12891-023-06806-y
Granger, C. L. (2016). Physiotherapy management of lung cancer. J Physiother, 62(2), 60-67. https://doi.org/10.1016/j.jphys.2016.02.010
Ha, D., Ries, A. L., Mazzone, P. J., Lippman, S. M., & Fuster, M. M. (2018). Exercise capacity and cancer-specific quality of life following curative intent treatment of stage I-IIIA lung cancer. Support Care Cancer, 26(7), 2459-2469. https://doi.org/10.1007/s00520-018-4078-4
Khandhar, S. J., Schatz, C. L., Collins, D. T., Graling, P. R., Rosner, C. M., Mahajan, A. K., Kiernan, P. D., Liu, C., & Fernando, H. C. (2018). Thoracic enhanced recovery with ambulation after surgery: a 6-year experience. Eur J Cardiothorac Surg, 53(6), 1192-1198. https://doi.org/10.1093/ejcts/ezy061
Li, J., Guo, N. N., Jin, H. R., Yu, H., Wang, P., & Xu, G. G. (2017). Effects of exercise training on patients with lung cancer who underwent lung resection: a meta-analysis. World J Surg Oncol, 15(1), 158. https://doi.org/10.1186/s12957-017-1233-1
Lora-Millan, J. S., Sanchez-Cuesta, F. J., Romero, J. P., Moreno, J. C., & Rocon, E. (2022). A unilateral robotic knee exoskeleton to assess the role of natural gait assistance in hemiparetic patients. Journal of NeuroEngineering and Rehabilitation, 19(1), 109. https://doi.org/10.1186/s12984-022-01088-2
Lu, J., Lin, R., Zhang, C., Zhang, M., Wang, Y., & Zhang, Y. (2022). Exercise training modalities in patients with lung cancer: a protocol for systematic review and network meta-analysis. BMJ Open, 12(9), e058788. https://doi.org/10.1136/bmjopen-2021-058788
Machado, P., Pimenta, S., Oliveiros, B., Ferreira, J. P., Martins, R. A., & Cruz, J. (2021). Effect of Exercise Training on Quality of Life after Colorectal and Lung Cancer Surgery: A Meta-Analysis. Cancers (Basel), 13(19). https://doi.org/10.3390/cancers13194975
Mayor, M. A., Khandhar, S. J., Chandy, J., & Fernando, H. C. (2018). Implementing a thoracic enhanced recovery with ambulation after surgery program: key aspects and challenges. J Thorac Dis, 10(Suppl 32), S3809-s3814. https://doi.org/10.21037/jtd.2018.10.106
Minnella, E. M., & Carli, F. (2018). Prehabilitation and functional recovery for colorectal cancer patients. Eur J Surg Oncol, 44(7), 919-926. https://doi.org/10.1016/j.ejso.2018.04.016
Nugent, S. M., Golden, S. E., Hooker, E. R., Sullivan, D. R., Thomas, C. R., Jr., Deffebach, M. E., Sukumar, M. S., Schipper, P. H., Tieu, B. H., Moghanaki, D., Wisnivesky, J., Samson, P., Robinson, C., & Slatore, C. G. (2020). Longitudinal Health-related Quality of Life among Individuals Considering Treatment for Stage I Non-Small-Cell Lung Cancer. Ann Am Thorac Soc, 17(8), 988-997. https://doi.org/10.1513/AnnalsATS.202001-029OC
Peñaloza-González, J. A., González-Mejía, S., & García-Melo, J. I. (2023). Development of a Control Strategy in an Isokinetic Device for Physical Rehabilitation. Sensors (Basel), 23(13). https://doi.org/10.3390/s23135827
Soares-Miranda, L., Lucia, A., Silva, M., Peixoto, A., Ramalho, R., da Silva, P. C., Mota, J., Macedo, G., & Abreu, S. (2021). Physical Fitness and Health-related Quality of Life in Patients with Colorectal Cancer. Int J Sports Med, 42(10), 924-929. https://doi.org/10.1055/a-1342-7347
Statistics
347 Views | 201 Downloads
How to Cite
Na, L., Yijin, W., Wenxin, Z., & Jumuddin, F. (2024). Development of a Postoperative Rehabilitation Training Device for Patients with Upper and Lower Limb Muscular Atrophy. International Journal of Advancement in Life Sciences Research, 7(1), 120-129. https://doi.org/https://doi.org/10.31632/ijalsr.2024.v07i01.013