Role of Biological Nitrogen Fixation (BNF) in Sustainable Agriculture: A Review
Abstract
Agriculture has an enormous environmental footprint. One of the best ways to mitigate climate change is to create balanced food systems based on sustainable agriculture. To reduce the chemical dependence scientists are engineering crop plants for N 2 fixation and they are focused on the biological process BNF (Biological Nitrogen Fixation) for the needs of N2 for crop plant soils. N2 fixed by the BNF process reduces the production cost, Green House gas (GHG) emissions, pollution of surface and ground water. Several management practices are there which influence BNF process in agricultural system. They are N- fertilization species genotype and cultivar and seeding ratios. Better management practices can help to improve N2 fixation. This review highlights the agro-economic importance of BNF and shows it as a cost effective, non- polluting way to improve the soil fertility and crop production.
Downloads
References
Barker, R. and Chapman, D. (1988). The Economics of Sustainable Agricultural Systems in developing Countries. Mimeo. Cornell University. Ithaca. NY.
Batista, Marcelo Bueno, Ray Dixon (2019). Manipulating nitrogen regulation in diazotrophic bacteria for agronomic benefit, Biochem Soc Trans 47 (2): 603–614. https://doi.org/10.1042/BST20180342
Beyan, S.M., Wolde-meskel, E., Dakora, F.D. (2018). An assessment of plant growth and N2 fixation in soybean genotypes grown in uninoculated soils collected from different locations in Ethiopia, Symbiosis 75: 189–203.
Bouldin, DR (1986). The chemistry and biology of flooded soils in relation to the nitrogen economy in rice fields. In Nitrogen Economy of Flooded Rice Soils. Eds. S K De Datta and W H Patrick. Martinus Nijhoff Publishers. Dordrecht. The Netherlands pp 1-14.
Burghardt, L.T. (2019). Evolving together, evolving apart: Measuring the fitness of rhizobial bacteria in and out of symbiosis with leguminous plants, New Phytol. 228(1): 28-34. https://doi.org/10.1111/nph.16045
Dellagi A, Quillere I, Hirel B. (2020). Beneficial soil-borne bacteria and fungi: a promising way to improve plant nitrogen acquisition, J Exp Bot. 71(15):4469-4479. doi: 10.1093/jxb/eraa112.
Dhamala, N.R., Rasmussen, J., Carlsson, G., Soegaard, K., Eriksen, J.N. (2017). Transfer in three-species grass-clover mixtures with chicory, ribwort plantain or caraway, Plant and Soil 413:217-230.
Dwivedi, S.L.; Sahrawat, K.L.; Upadhyaya, H.D.; Mengoni, A.; Galardini, M.; Bazzicalupo, M.; Biondi, E.G.; Hungria, M.; Kaschuk, G.; Blair, M.W.; et al. (2015) Advances in Host Plant and Rhizobium Genomics to Enhance Symbiotic Nitrogen Fixation in Grain Legumes, Adv. Agron. 129 :1-116.
Ferguson, B.J., Mens, C., Hastwell, A.H., Zhang, M., Su, H., Jones, C.H., Chu, X., Gresshoff, P.M. (2018). Legume nodulation: The host controls the party, Plant Cell Environ. 42(1): 41–51.
Fustec, J., Lesuffleur, F., Mahieu, S., Cliquet, JB. (2010). Nitrogen rhizodeposition of legumes. A review, Agronomy for Sustainable Development 30:57-66.
Gaby, J.B.; Buckley, D.H. (2011). A global census of nitrogenase diversity, Environ. Microbiol. 13(7): 1790–1799.
Goulding, K.W.T. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom, Soil Use Manag. 32: 390–399.
Griesmann M, Chang Y, Liu X, Song Y, Haberer G, Crook MB, Billault-Penneteau B, Lauressergues D, Keller J, Imanishi L, Roswanjaya YP, Kohlen W, Pujic P, Battenberg K, Alloisio N, Liang Y, Hilhorst H, Salgado MG, Hocher V, Gherbi H, Svistoonoff S, Doyle JJ, He S, Xu Y, Xu S, Qu J, Gao Q, Fang X, Fu Y, Normand P, Berry AM, Wall LG, Ané JM, Pawlowski K, Xu X, Yang H, Spannagl M, Mayer KFX, Wong GK, Parniske M, Delaux PM, Cheng S. (2018). Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis, Science 361: (6398):eaat1743. doi: 10.1126/science.aat1743.
Havlin, J.L., Tisdale, S.L., Nelson, W.L., Beaton, J.D. (2014). Soil Fertility and Fertilizers: An Introduction to Nutrient Management. 8th ed. Vol. 516. Upper Saddle River, NJ: Pearson Prentice Hall pp. 516
Herridge, D.F., Peoples, M.B., Boddey, R.M. (2008). Global inputs of biological nitrogen fixation in agricultural systems, Plant Soil 311: 1–18.
Ivleva NB, Groat J, Staub JM, Stephens M (2016) Expression of Active Subunit of Nitrogenase via Integration into Plant Organelle Genome. PLoS ONE 11(8): e0160951. https://doi.org/10.1371/journal.pone.0160951
Koyama, T. and App, A. (1979). Nitrogen balance in flooded rice soils. In Nitrogen and Rice. The Intl. Rice Research Inst Los Banos. Philippines pp 95-104.
Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J., Garnier, J. (2014) 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland, Environmental Research Letters 9:1-9.
Li, Y., Ran, W., Zhang, R., Sun, S., (2009). Facilitated Legume nodulation, phosphate uptake and nitrogen transfer by arbuscular inoculation in an upland rice and mung bean intercropping system, Plant and Soil 315:285-296.
Lumpkin, TA and Plucknett, DL (1982). Azolla as a green manure: Use and management in crop production. Westview Tropical Agriculture Series No.5. Westview Press. Boulder. CO pp.225
Mabrouk, Y., Hemissi, I., Salem, I.B., Mejri, S., Saidi, M., Belhadj, O. (2018). Potential of Rhizobia in Improving Nitrogen Fixation and Yields of Legumes, Symbiosis, Everlon Cid Rigobelo, IntechOpen, DOI: 10.5772/intechopen.73495.
Mahmud, K.; Makaju, S.; Ibrahim, R.; Missaoui, A (2020). Current Progress in Nitrogen Fixing Plants and Microbiome Research, Plants 9(1): 97https://doi.org/10.3390/plants9010097
Miransari, M., Balakrishnan, P., Smith, D., Mackenzie, A., Bahrami, H., Malakouti, M., Rejali, F. (2006). Overcoming the stressful effect of low pH on soybean root hair curling using lipochitooligosacharides, Commun. Soil Sci. Plant Anal. 37(7): 1103–1110.
Mukherjee, R. and Sen, S. (2021). Agricultural Sustainability through Nitrogen Fixation: Approaches and Techniques, Harvest 6(1): 48-55.
Odum, E.P. (1989). Input management of production systems, Science 243: 177-182.
Pankievicz, V.C.S., do Amaral, F.P., Santos, K.F.D.N., Agtuca, B., Xu, Y., Schueller, M.J., Arisi, A.C.M., Steffens, M.B.R., de Souza, E.M., Pedrosa, F.O., et al. (2015). Robust biological nitrogen fixation in a model grass-bacterial association, Plant J. 81: 907–919.
Pedrosa FO, Monteiro RA, Wassem R, Cruz LM, Ayub RA, Colauto NB, et al. (2011) Genome of Herbaspirillum seropedicae Strain SmR1, a Specialized Diazotrophic Endophyte of Tropical Grasses. PLoS Genet 7(5): e1002064.
Pingali, P.L. Moya, P.F. and Velasco, L.E. (1990). The post-green revolution blues in asian rice production - The diminished gap between experiment station and farmer yields, IRRI Social Science Division paper No. 90-01.
Roger, P A and Ladha, J K (1992). Biological N2 fixation in wetland rice fields: Estimation and contribution to nitrogen balance, Plant and Soil 141: 41-55.
Rogers, C.; Oldroyd, G.E. (2014). Synthetic biology approaches to engineering the nitrogen symbiosis in cereals, J. Exp. Bot. 65(8): 1939–1946.
Rouquette, F., Smith, G. (2010). Effects of biological nitrogen fixation and nutrient cycling on stocking strategies for cow-calf and stocker programs, The Professional Animal Scientist 26:131-141.
Santi, C.; Bogusz, D.; Franche, C. (2013). Biological nitrogen fixation in non-legume plants. Ann. Bot. 111(5): 743–767. https://doi.org/10.1093/aob/mct048
Sen,S. and Mukherji,S. (1998). Seasonal effects on nitrogenous compounds in two crop plants, Environment and Ecology 16(4) : 871-874.
Shantharam, S., Mattoo, A.K. (1997). Enhancing biological nitrogen fixation: an appraisal of current and alternative technologies for N input into plants, Plant and Soil 194:205-216.
Smercina, D.N., Evans, S.E., Friesen, M.L., Tiemann, L.K. (2019). To Fix or Not to Fix: Controls on Free-Living Nitrogen-Fixation in the rhizosphere, Appl. Environ. Microbiol. 85(6):e02546-18. doi: 10.1128/AEM.02546-18.
Soumare, A.; Diop, T.; Manga, A.; Ndoye, I. Role of arbuscular mycorrhizal fungi and nitrogen fixing bacteria on legume growth under various environmental stresses. Int. J. Biosci. 2015, 7, 31–46.
Suliema, S., Tran, L.S.P. (2015). Legume Nitrogen Fixation in a Changing Environment—Achievements and Challenges, Sulieman, S., Phan Tran, L.S., Eds. Springer: Cham, Switzerland, pp. 133.
Suzaki, T., Takeda, N., Nishida, H., Hoshino, M., Ito, M., Misawa, F., Handa, Y., Miura, K. Masayoshi, Kawaguchi (2019). Lack of symbiont accommodation controls intracellular symbiont accommodation in root nodule and arbuscular mycorrhizal symbiosis in Lotus japonicus, PLoS Genet. 15(1): e1007966.
TAC CGIAR (1988) Sustainable agricultural production: Implications for International Agricultural Research. CGIAR (Consultative Group on International Agricultural Research) Meeting, Berlin. Germany.
van Deynze A, Zamora P, Delaux P-M, Heitmann C, Jayaraman D, Rajasekar S, et al. (2018) Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biol 16(8): e2006352. https://doi.org/10.1371/journal.pbio.2006352
van Velzen, R., Holmer, R., Bu, F., Rutten, L., van Zeijl, A., Liu, W., Santuari, L., Cao, Q., Sharma, T., Shen, D., et al. (2018).Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses, Proc. Natl. Acad. Sci. USA 115(20): E4700–E4709.
Wahbi, S., Maghraoui, T., Hafidi, M., Sanguin, H., Oufdou, K., Prin, Y., Duponnois, R., Galiana, A. (2016). Enhanced transfer of biologically fixed N from faba bean to intercropped wheat through mycorrhizal symbiosis, Applied Soil Ecology 107:91-98
Wardhani TAK, Roswanjaya YP, Dupin S, Li H, Linders S, Hartog M, Geurts R, van Zeijl A. (2019). Transforming, Genome Editing and Phenotyping the Nitrogen-fixing Tropical Cannabaceae Tree Parasponia andersonii, J Vis Exp. 18;(150). doi: 10.3791/59971.
Watanabe, I and Liu, C C (1992). Improving nitrogen-fixing systems and integrating them into sustainable rice farming, Plant and Soil 141: 57-67.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.