Evaluating the Effects of Amorphophallus paeoniifolius Enzyme Extract on Seed Growth Parameters in Selected Crops Exposed to Treated Textile Dyes and Wastewater

  • Anjali . School of Biological and Life Sciences, Galgotias University, Plot No.2, Sector 17-A Yamuna Expressway, Gautam Buddh Nagar, Uttar Pradesh, India https://orcid.org/0000-0001-5380-8255
  • Anuradha Singh School of Biological and Life Sciences, Galgotias University, Plot No.2, Sector 17-A Yamuna Expressway, Gautam Buddh Nagar, Uttar Pradesh, India https://orcid.org/0000-0001-5004-4907

Abstract

Dyes and industrial effluents often contain toxic substances that can hinder seed germination and growth by affecting water uptake and nutrient absorption therefore understanding the impact of these pollutants on plants is crucial. The current study aims to test the effects of dye and effluent on the germination and growth of seeds of Vigna radiata, Cicer arientinum, and Triticum aestivum, with and without the addition of crude enzyme from Amorphophallus paeoniifolius. The study focuses on four key parameters i.e. germination percentage, root length and shoot length, vigour index, fresh and dry weight of seed. Crude enzyme from A. paeoniifolius positively impacts seed germination, boost seedling development (Shoot and Root lengths) and (fresh and dry weight) of Vigna radiata, Cicer arientinum, and Triticum aestivum. Untreated seed germination of Vigna radiate was between 40-70%, Cicerarientinum was between 20-70% and Triticum aestivum was 40-60% and after treatment with the enzyme seed germination percentage was increased between 60-90%,50-80 %, 60-90% respectively. Among all three plants Vigna radiata has highest seed germination percentage, maximum shoot length, root length and vigour index when treated with A. paeoniifolius. Therefore, seed germination and seedling development in both monocot and dicot plants concludes that treated water by A. paeoniifolius can be used to meet the water requirements for irrigation purpose but further studies are needed to test toxicity impacts under natural soil environment and on human through food chain.

Keywords: Amorphophallus paeoniifolius, Crude Enzyme, Dyes, Seed Germination, Textile Effluent

Downloads

Download data is not yet available.

References

Abdul‐Baki, A. A., & Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria 1. Crop science, 13(6), 630-633. https://doi.org/10.2135/cropsci1973.0011183X001300060013x
Anjali, S. A., & Singh, A. (2022). Biological Methods For The Treatment Of Textile Industry Effluent: A Review. Journal of Pharmaceutical Negative Results, 752-765.https://pnrjournal.com/index.php/home/article/view/2596
Anali, A. S. (2022). Treatment of Textile Industry Effluents and Red CE Dye by Amorphophallus paeonifolius Crude Enzyme Extract. Asian Journal of Biological and Life Sciences, 11(2), 325.http://dx.doi.org/10.5530/ajbls.2022.11.43
Anjali, Surolia R., Singh, A. (2023). Characterization of various parameters of textile Dyes and their treatment by Amorphophallus paeoniifolius crude enzyme extract, Eur. Chem. Bull.12 (4), 8679-8689 (2023).https://doi.org/10.48047/ecb/2023.12.si4.777
Ayed, L., Ksibi, I. E., Charef, A., & Mzoughi, R. E. (2021). Hybrid coagulation-flocculation and anaerobic-aerobic biological treatment for industrial textile wastewater: pilot case study. The Journal of The Textile Institute, 112(2), 200-206.https://doi.org/10.1080/00405000.2020.1731273
Chanikya, P., Nidheesh, P. V., Babu, D. S., Gopinath, A., & Kumar, M. S. (2021). Treatment of dyeing wastewater by combined sulfate radical based electrochemical advanced oxidation and electrocoagulation processes. Separation and Purification Technology, 254, 117570.https://doi.org/10.1016/j.seppur.2020.117570
Calheiros, C. S., Rangel, A. O., & Castro, P. M. (2008). The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis. Archives of environmental contamination and toxicology, 55, 404-414.https://doi.org/10.1007/s00244-007-9087-0
Fiaz, M., Ahmed, I., Hassan, S. M. U., Niazi, A. K., Khokhar, M. F., Farooq, M. A., & Arshad, M. (2023). Antibiotics induced changes in nitrogen metabolism and antioxidative enzymes in mung bean (Vigna radiata). Science of The Total Environment, 873, 162449.https://doi.org/10.1016/j.scitotenv.2023.162449
Hussain, I., Iqbal, M., Nawaz, M., Rasheed, R., Perveen, A., Mahmood, S., ... & Wahid, A. (2013). Effect of Sugar Mill Effluent on Growth and Antioxidative Potential of Maize Seedling. International Journal of Agriculture & Biology, 15(6).1227-1235.
Kathirvel, P. (2012). The effect of dye factory effluent on growth, yield and biochemical attributes of Bengal Gram (Cicer arietinum L.). International Journal of Applied Biology and Pharmaceutical Technology, 3(1), 146-150.
Kagalkar, A. N., Jagtap, U. B., Jadhav, J. P., Bapat, V. A., & Govindwar, S. P. (2009). Biotechnological strategies for phytoremediation of the sulfonated azo dye Direct Red 5B using Blumea malcolmii Hook. Bioresource technology, 100(18), 4104-4110.https://doi.org/10.1016/j.biortech.2009.03.049
Kishor, R., Purchase, D., Saratale, G. D., Ferreira, L. F. R., Bilal, M., Iqbal, H. M., & Bharagava, R. N. (2021). Environment friendly degradation and detoxification of Congo red dye and textile industry wastewater by a newly isolated Bacillus cohnni (RKS9). Environmental Technology & Innovation, 22, 101425.https://doi.org/10.1016/j.eti.2021.101425
Kumar, V., Pallavi, P., Sen, S. K., & Raut, S. (2024). Harnessing the potential of white rot fungi and ligninolytic enzymes for efficient textile dye degradation: A comprehensive review. Water Environment Research, 96(1), e10959.https://doi.org/10.1002/wer.10959
Kurmi, K. P., Singh, S., Tailor, S. P., & Chaudhary, A. K. (2023). Effect of Textile Effluent on Seed Germination and Early Growth of Wheat (Triticum aestivum L.) and Mustard (Brassica juncea L.). Current Journal of Applied Science and Technology, 42(9), 1-5.https://doi.org/10.9734/cjast/2023/v42i94089
Kyauk, H., Hopper, N. W., & Brigham, R. D. (1995). Effects of temperature and presoaking on germination, root length and shoot length of sesame (Sesamum indicum L.). Environmental and Experimental Botany, 35(3), 345-351.https://doi.org/10.1016/0098-8472(95)00013-X
Laad, S., Premakshi, H. G., Mirjankar, M., Mulla, S., Pujari, N., & Kamanavalli, C. (2020). Partial purification, characterization and investigation of inhibitory effects of organic compounds on cinnamomum verum polyphenoloxidase enzymes. Applied Food Biotechnology, 7(3), 183-193. https://doi.org/10.22037/afb.v7i3.29854
Nedeva, D., & Nikolova, A. (1999). Fresh and dry weight changes and germination capacity of natural or premature desiccated developing wheat seeds. Bulgarian Journal Plant Physiology, 25(1-2), 3-15.
Nawaz, S., Ali, S. M., & Yasmin, A. (2006). Effect of industrial effluents on seed germination and early growth of Cicer arientum. J. Biosci, 6(1), 49-54.
Onsa, G. H., bin Saari, N., Selamat, J., & Bakar, J. (2000). Latent polyphenol oxidases from sago log (Metroxylon sagu): partial purification, activation, and some properties. Journal of agricultural and food chemistry, 48(10), 5041-5045.https://doi.org/10.1021/jf9909454
Pandey, B. V., Dubey, M. K., & Upadhyay, R. S. (2020). Bioremediation of textile dye procion red yellow by using Pseudomonas fluorescens. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 90, 135-141.https://doi.org/10.1007/s40011-019-01089-7
Pandey, B. V., Dubey, M. K., & Upadhyay, R. S. (2020). Enhanced Biodecolorization of Synthetic Textile Dyes by NTG Mutagenesis. National Academy Science Letters, 43(3), 299-302.https://doi.org/10.1007/s40009-019-00858-2
Rehman, S., Harris, P. J. C., & Bourne, W. F. (1998). Effects of presowing treatment with calcium salts, potassium salts, or water on germination and salt tolerance of Acacia seeds. Journal of plant Nutrition, 21(2), 277-285.https://doi.org/10.1080/01904169809365402
Rahman, M. A., Rayhan, M. Y. H., Chowdhury, M. A. H., Mohiuddin, K. M., & Chowdhury, M. A. K. (2018). Phytotoxic effect of synthetic dye effluents on seed germination and early growth of red amaranth. Fundamental and Applied Agriculture, 3(2), 480-490.https://doi.org/10.5455/faa.299239
Rahman, M. A., Rahman, M. S., Mohiuddin, K. M., Chowdhury, M. A. H., & Chowdhury, M. A. K. (2019). Germination and seedling growth of rice (Oryza sativa L.) as affected by varying concentrations of loom-dye effluent: germination and rice growth affected by effluent. Journal of the Bangladesh Agricultural University, 17(2), 153-160.https://doi.org/10.3329/jbau.v17i2.41938
Raji, R. N., Vysakh, A., Suma, D., Preetha, M. K., & Latha, M. S. (2019). Phytochemicals from Traditional Medicinal Plants. In Phytochemicals from Medicinal Plants (pp. 3-32). Apple Academic Press.
Rana, S., & Kumar, K. (2017). Study of Phytotoxic effect of textile wastewater on seed germination and seedling growth of Triticum aestivum. International Journal of Biosciences and Technology, 10(8), 58.
Rohit, K. C., & Ponmurugan, P. (2013). Seed germination study of Vigna radiata using treated and untreated industrial effluents. International Journal of Latest Research in Science and Technology, 2(2), 103-104.https://www.mnkjournals.com/journal/ijlrst/pdf/Volume_2_2_2013/10170.pdf
Rajasulochana, P., & Preethy, V. (2016). Comparison on efficiency of various techniques in treatment of waste and sewage water–A comprehensive review. Resource-Efficient Technologies, 2(4), 175-184.https://doi.org/10.1016/j.reffit.2016.09.004
Shahena, S., Rajan, M., Chandran, V., & Mathew, L. (2021). Allelopathic effect of wedelia trilobata l., on the germination and growth of cicer arietinum, vigna unguiculata, and vigna radiata seedlings. J. Appl. Biol. Biotechnol, 9, 93-114.https://doi.org/10.7324/JABB.2021.9209
Shekhawat, G. S., Mahawar, L., Rajput, P., Rajput, V. D., Minkina, T., & Singh, R. K. (2021). Role of engineered carbon nanoparticles (CNPs) in promoting growth and metabolism of Vigna radiata (L.) Wilczek: Insights into the biochemical and physiological responses. Plants, 10(7), 1317.https://doi.org/10.3390/plants10071317
Singh, A., & Wadhwa, N. (2014). A review on multiple potential of aroid: Amorphophallus paeoniifolius. Int J Pharm Sci Rev Res, 24(1), 55-60.
Singh, A., Gupta, P., & Wadhwa, N. (2015). Cellulase from stored Amorphophallus paeoniifolius in clarification of apple juice. International Food Research Journal, 22(2), 840-843.
Singh, A., & Wadhwa, N. (2017). Biochemical characterization and thermal inactivation of polyphenol oxidase from elephant foot yam (Amorphophallus paeoniifolius). Journal of Food Science and Technology, 54, 2085-2093. https://doi.org/10.1007/s13197-017-2647-z
Zocca, F., Lomolino, G., & Lante, A. (2008). 3, 4-Dihydroxyphenylalanine gel diffusion assay for polyphenol oxidase quantification. Analytical biochemistry, 383(2), 335-336.https://doi.org/10.1016/j.ab.2008.09.001
Statistics
75 Views | 66 Downloads
How to Cite
., A., & Singh, A. (2024). Evaluating the Effects of Amorphophallus paeoniifolius Enzyme Extract on Seed Growth Parameters in Selected Crops Exposed to Treated Textile Dyes and Wastewater. International Journal of Advancement in Life Sciences Research, 7(4), 157-171. https://doi.org/https://doi.org/10.31632/ijalsr.2024.v07i04.014