Unveiling Eco-Friendly Solutions: A Comprehensive Review on Leveraging Mechanism-Based Pathways for Sustainable Mitigation of Pesticide Metabolite Contamination and Enhanced Public Health
Abstract
The harmful consequences of several pesticides, such as Benzene Hexachloride (BHC), chlorpyrifos, cypermethrin and atrazine on the environment and human health are examined in this study. Through a variety of exposure pathways, these pesticides carry concerns including neurotoxicity, carcinogenicity, and reproductive problems. Even though traditional degrading methods like fire and hydrolysis exist, their usefulness is limited and they may produce hazardous materials. Alternative methods, such as bacteria-mediated remediation, have the potential to efficiently and sustainably break down pesticides. Pesticides can be converted into non-toxic chemicals by the enzymes and metabolic pathways found in bacterial species such as Sphingomonas sp., Clostridium sp. and Pseudomonas sp. BHC degradation is aided by enzymes like LinA and LinB, whereas the breakdown of chlorpyrifos is mediated by organophosphorus hydrolase (OPH) and methyl parathion hydrolase (MPH). Pseudomonas alcaligenes and Bacillus thuringiensis SG4 are effective at breaking down cypermethrin and break down atrazine using enzymes such AtzA, AtzB, and AtzC. This work highlights the potential of bioremediation to mitigate pesticide pollution and provides ecologically friendly alternatives for sustainable farming practices and ecosystem preservation by providing an understanding of bacterial mechanisms.
Downloads
References
Barr, D. B., Panuwet, P., Nguyen, J. V., Udunka, S., & Needham, L. L. (2007). Assessing Exposure to Atrazine and Its Metabolites Using Biomonitoring. Environmental Health Perspectives, 115(10), 1474–1478. https://doi.org/10.1289/ehp.10141
Bhatt, P., Huang, Y., Zhang, W., Sharma, A., & Chen, S. (2020a). Enhanced Cypermethrin Degradation Kinetics and Metabolic Pathway in Bacillus thuringiensis Strain SG4. Microorganisms, 8(2), 223. https://doi.org/10.3390/microorganisms8020223
Bhatt, P., Rene, E. R., Huang, Y., Wu, X., Zhou, Z., Li, J., Kumar, A. J., Sharma, A., & Chen, S. (2022). Indigenous bacterial consortium-mediated cypermethrin degradation in the presence of organic amendments and Zea mays plants. Environmental Research, 212, 113137. https://doi.org/10.1016/j.envres.2022.113137
Billet, L., Devers, M., Rouard, N., Martin-Laurent, F., & Spor, A. (2019). Labour sharing promotes coexistence in atrazine degrading bacterial communities. Scientific Reports, 9(1), 18363. https://doi.org/10.1038/s41598-019-54978-2
Bondareva, L., & Fedorova, N. (2021). Pesticides: Behavior in Agricultural Soil and Plants. Molecules, 26(17), 5370. https://doi.org/10.3390/molecules26175370
Casadó, L., Arrebola, J. P., Fontalba, A., & Muñoz, A. (2019). Adverse effects of hexaclorobenzene exposure in children and adolescents. Environmental Research, 176, 108421. https://doi.org/10.1016/j.envres.2019.03.059
De Souza, M. L., Seffernick, J., Martinez, B., Sadowsky, M. J., & Wackett, L. P. (1998). The Atrazine Catabolism Genes atzABC Are Widespread and Highly Conserved. Journal of Bacteriology, 180(7), 1951–1954. https://doi.org/10.1128/JB.180.7.1951-1954.1998
Deering, K., Spiegel, E., Quaisser, C., Nowak, D., Rakete, S., Garí, M., & Bose-O’Reilly, S. (2020). Exposure assessment of toxic metals and organochlorine pesticides among employees of a natural history museum. Environmental Research, 184, 109271. https://doi.org/10.1016/j.envres.2020.109271
El-Bestawy, E., Sabir, J., Mansy, A. H., & Zabermawi, N. (2013). Isolation, identification and acclimatization of Atrazine-resistant soil bacteria. Annals of Agricultural Sciences, 58(2), 119–130. https://doi.org/10.1016/j.aoas.2013.07.005
Elzakey, E. M., El-Sabbagh, S. M., Eldeen, E. E.-S. N., Adss, I. A.-A., & Nassar, A. M. K. (2023a). Bioremediation of chlorpyrifos residues using some indigenous species of bacteria and fungi in wastewater. Environmental Monitoring and Assessment, 195(6), 779. https://doi.org/10.1007/s10661-023-11341-3
Gangola, S., Sharma, A., Bhatt, P., Khati, P., & Chaudhary, P. (2018). Presence of esterase and laccase in Bacillus subtilis facilitates biodegradation and detoxification of cypermethrin. Scientific Reports, 8(1), 12755. https://doi.org/10.1038/s41598-018-31082-5
Ghazi Alattas, S., Zabermawi, N. M., & El Bestawy, E. (2023a). Biodegradation of atrazine using selected marine bacteria: Possibilities for treating pesticide - contaminated wastewater. Journal of King Saud University - Science, 35(6), 102721. https://doi.org/10.1016/j.jksus.2023.102721
Gupta, P. K. (2004). Pesticide exposure—Indian scene. Toxicology, 198(1-3), 83-90. https://doi.org/10.1016/j.tox.2004.01.021
He, J., Zhang, K., Wang, L., Du, Y., Yang, Y., & Yuan, C. (2022). Highly efficient degradation of cypermethrin by a co-culture of Rhodococcus sp. JQ-L and Comamonas sp. A-3. Frontiers in Microbiology, 13, 1003820. https://doi.org/10.3389/fmicb.2022.1003820
Henn, C., Monteiro, D. A., Boscolo, M., Da Silva, R., & Gomes, E. (2020). Biodegradation of atrazine and ligninolytic enzyme production by basidiomycete strains. BMC Microbiology, 20(1), 266. https://doi.org/10.1186/s12866-020-01950-0
Huang, Y., Xiao, L., Li, F., Xiao, M., Lin, D., Long, X., & Wu, Z. (2018). Microbial Degradation of Pesticide Residues and an Emphasis on the Degradation of Cypermethrin and 3-phenoxy Benzoic Acid: A Review. Molecules, 23(9), 2313. https://doi.org/10.3390/molecules23092313
Huang, Y., Zhang, W., Pang, S., Chen, J., Bhatt, P., Mishra, S., & Chen, S. (2021). Insights into the microbial degradation and catalytic mechanisms of chlorpyrifos. Environmental Research, 194, 110660. https://doi.org/10.1016/j.envres.2020.110660
Indonesian Agricultural Environment Research Institute (IAERI), Pati 59182, Indonesia. (2019). Degradation of Cypermethrin by Indigenous Bacteria from Contaminated Soil. Makara Journal of Science, 210–216. https://doi.org/10.7454/mss.v23i4.7998
International Agency for Research on Cancer, International Agency for Research on Cancer, Weltgesundheitsorganisation (eds) (1991) Occupational exposures in insecticide application, and some pesticides: this publication represents the views and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, which met in Lyon, 16 - 23 october 1990. IARC, Lyon
John, E. M., & Shaike, J. M. (2015). Chlorpyrifos: Pollution and remediation. Environmental Chemistry Letters, 13(3), 269–291. https://doi.org/10.1007/s10311-015-0513-7
Joshi, V., Jindal, M. K., & Sar, S. K. (2023). Approaching a discussion on the detachment of chlorpyrifos in contaminated water using different leaves and peels as bio adsorbents. Scientific Reports, 13(1), 11186. https://doi.org/10.1038/s41598-023-38471-5
Kannan, S., Perumal, V., Yuvaraj, A., Pittarate, S., Kim, J. S., & Krutmuang, P. (2023). Biodegradation of pesticide in agricultural soil employing entomopathogenic fungi: Current state of the art and future perspectives. Heliyon. https://doi.org/10.1016/j.heliyon.2023.e23406
Kumar, B., Verma, V. K., Naskar, A. K., Chakraborty, P., Kumar, S., & Mukherjee, D. (2013). Human health risk from hexachlorocyclohexane and dichlorodiphenyltrichloroethane pesticides, through consumption of vegetables: Estimation of daily intake and hazard quotients. Journal of Xenobiotics, 3(1), 6. https://doi.org/10.4081/xeno.2013.e6
Kumar, S., Kaushik, G., Dar, M. A., Nimesh, S., López-Chuken, U. J., & Villarreal-Chiu, J. F. (2018). Microbial Degradation of Organophosphate Pesticides: A Review. Pedosphere, 28(2), 190–208. https://doi.org/10.1016/S1002-0160(18)60017-7
Lal, R., Pandey, G., Sharma, P., Kumari, K., Malhotra, S., Pandey, R., Raina, V., Kohler, H.-P. E., Holliger, C., Jackson, C., & Oakeshott, J. G. (2010a). Biochemistry of Microbial Degradation of Hexachlorocyclohexane and Prospects for Bioremediation. Microbiology and Molecular Biology Reviews, 74(1), 58–80. https://doi.org/10.1128/MMBR.00029-09
Laura, Ma., Snchez-Salinas, E., Dantn Gonzlez, E., & Luisa, M. (2013). Pesticide Biodegradation: Mechanisms, Genetics and Strategies to Enhance the Process. In R. Chamy (Ed.), Biodegradation—Life of Science. In Tech. https://doi.org/10.5772/56098
Mali, H., Shah, C., Patel, D. H., Trivedi, U., & Subramanian, R. B. (2022). Degradation insight of organophosphate pesticide chlorpyrifos through novel intermediate 2,6-dihydroxypyridine by Arthrobacter sp. HM01. Bioresources and Bioprocessing, 9(1), 31. https://doi.org/10.1186/s40643-022-00515-5
Mili, C., Kalita, S., & Roy, S. (2022). Microbes as a potential bioremediation tool for atrazine-contaminated soil: A review. Journal of Applied Biology & Biotechnology. https://doi.org/10.7324/JABB.2023.110102
Nayak, P., & Solanki, H. (2021). Pesticides And Indian Agriculture- A Review. International Journal of Research -Granthaalayah, 9(5), 250–263. https://doi.org/10.29121/granthaalayah.v9.i5.2021.3930
Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., & Hens, L. (2016). Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Frontiers in Public Health, 4. https://doi.org/10.3389/fpubh.2016.00148
Olivero-Verbel, J., Guerrero-Castilla, A., & Ramos, N. R. (2011). Biochemical Effects Induced by the Hexachlorocyclohexanes. In D. M. Whitacre (Ed.), Reviews of Environmental Contamination and Toxicology Volume 212 (Vol. 212, pp. 1–28). Springer New York. https://doi.org/10.1007/978-1-4419-8453-1_1
Pathak, R. K., & Dikshit, A. K. (2012). Atrazine and Human Health. International Journal of Ecosystem, 1(1), 14–23. https://doi.org/10.5923/j.ije.20110101.03
Paul, R., Talukdar, A., Bhattacharya, R., & Santra, G. (2013). -Benzene hexachloride poisoning leading to acute hepatorenal decompensation. Case Reports, 2013(aug07 1), bcr2013009851–bcr2013009851. https://doi.org/10.1136/bcr-2013-009851
Rajmohan, K. S., Chandrasekaran, R., & Varjani, S. (2020). A Review on Occurrence of Pesticides in Environment and Current Technologies for Their Remediation and Management. Indian Journal of Microbiology, 60(2), 125–138. https://doi.org/10.1007/s12088-019-00841-x
Ruomeng, B., Meihao, O., Siru, Z., Shichen, G., Yixian, Z., Junhong, C., Ruijie, M., Yuan, L., Gezhi, X., Xingyu, C., Shiyi, Z., Aihui, Z., & Baishan, F. (2023). Degradation strategies of pesticide residue: From chemicals to synthetic biology. Synthetic and Systems Biotechnology, 8(2), 302–313. https://doi.org/10.1016/j.synbio.2023.03.005
Seffernick, J. L., Johnson, G., Sadowsky, M. J., & Wackett, L. P. (2000). Substrate Specificity of Atrazine Chlorohydrolase and Atrazine-Catabolizing Bacteria. Applied and Environmental Microbiology, 66(10), 4247–4252. https://doi.org/10.1128/AEM.66.10.4247-4252.2000
Sefidi-Heris, Y., & Hajizadeh, N. (2022). Bacterial Biodegradation of Phenolic Hydrocarbons. In S. I. Mulla & R. N. Bharagava (Eds.), Enzymes for Pollutant Degradation (Vol. 30, pp. 139–162). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-4574-7_7
Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., Kohli, S. K., Yadav, P., Bali, A. S., Parihar, R. D., Dar, O. I., Singh, K., Jasrotia, S., Bakshi, P., Ramakrishnan, M., Kumar, S., Bhardwaj, R., & Thukral, A. K. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1(11), 1446. https://doi.org/10.1007/s42452-019-1485-1
Sharma, M., Singh, D. N., Uttam, G., Sharma, P., Meena, S. A., Verma, A. K., & Negi, R. K. (2024). Adaptive evolution of Sphingopyxis sp. MC4 conferred degradation potential for persistent β- and δ-Hexachlorocyclohexane (HCH) isomers. Journal of Hazardous Materials, 461, 132545. https://doi.org/10.1016/j.jhazmat.2023.132545
Shi, X., Gu, A., Ji, G., Li, Y., Di, J., Jin, J., Hu, F., Long, Y., Xia, Y., Lu, C., Song, L., Wang, S., & Wang, X. (2011). Developmental toxicity of cypermethrin in embryo-larval stages of zebrafish. Chemosphere, 85(6), 1010–1016. https://doi.org/10.1016/j.chemosphere.2011.07.024
Shilpakar, O., & Karki, B. (2021). Cypermethrin poisoning manifesting with prolonged bradycardia: A case report. Toxicology Reports, 8, 10–12. https://doi.org/10.1016/j.toxrep.2020.12.005
Singh, S., Kumar, V., Chauhan, A., Datta, S., Wani, A. B., Singh, N., & Singh, J. (2018). Toxicity, degradation and analysis of the herbicide atrazine. Environmental Chemistry Letters, 16(1), 211–237. https://doi.org/10.1007/s10311-017-0665-8
Tanaka, K. (2019). Studies on the metabolism, mode of action, and development of insecticides acting on the GABA receptor. Journal of Pesticide Science, 44(1), 71–86. https://doi.org/10.1584/jpestics.J18-04
Wołejko, E., Łozowicka, B., Jabłońska-Trypuć, A., Pietruszyńska, M., & Wydro, U. (2022). Chlorpyrifos Occurrence and Toxicological Risk Assessment: A Review. International Journal of Environmental Research and Public Health, 19(19), 12209. https://doi.org/10.3390/ijerph191912209
Yao, S., Ye, J., Yang, Q., Hu, Y., Zhang, T., Jiang, L., Munezero, S., Lin, K., & Cui, C. (2021). Occurrence and removal of antibiotics, antibiotic resistance genes, and bacterial communities in hospital wastewater. Environmental Science and Pollution Research, 28(40), 57321–57333. https://doi.org/10.1007/s11356-021-14735-3
Yu, L., Li, J., Feng, M., Tang, Q., Jiang, Z., Chen, H., Shan, T., & Li, J. (2022). Identification and Dissipation of Chlorpyrifos and Its Main Metabolite 3,5,6-TCP during Wheat Growth with UPLC-QTOF/MS. Metabolites, 12(12), 1162. https://doi.org/10.3390/metabo12121162
Zhang, W., Lin, Z., Pang, S., Bhatt, P., & Chen, S. (2020). Insights Into the Biodegradation of Lindane (γ-Hexachlorocyclohexane) Using a Microbial System. Frontiers in Microbiology, 11, 522. https://doi.org/10.3389/fmicb.2020.00522
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.