Response in Cadmium Tolerance of Penicillium cyclopium Westling Subsequent to Exposure to Gamma Irradiation

Gamma induced cadmium tolerance in Penicillium

  • Dipanwita Das Amity University - Kolkata Campus, Rajarhat, Newtown, Kolkata, West Bengal 700156, India https://orcid.org/0000-0002-4127-3297
  • Debargha Chakraborty Candor International School, Bengaluru-560105, India & Department of Environmental Science, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
  • Anindita Chakraborty UGC-DAE, Consortium for Scientific Research, 3/LB-8,Saltlake, Kolkata 700098, India
  • Subhas Chandra Santra Department of Environmental Science, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India

Abstract

Role of gamma irradiation in modulating 1.1 times more cadmium (Cd) tolerance in Penicillium cyclopium Westling has been detailed in this paper. Augmentation in metal tolerance was recognized by escalation in response to Cadmium and Cd removal efficacies than that of their un-irradiated group. FTIR spectra and electron microscopic photographs further strengthen the role of low absorbed dose of gamma in modulating Cd tolerance in P.cyclopium. Up regulated activities of anti-oxidatives in gamma exposed fungal groups might be the reason for enhanced Cd tolerance than that of their un-irradiated counter parts. This findings reveal a positive and eco-friendly step for heavy metal bioremediation and metal stressed lignocellulosic waste degradation.

Keywords: P. cyclopium;, Gamma Bioremediation;, Antioxidative defense system

Downloads

Download data is not yet available.

References

Abbasi, S., Safaie, N., Shams-Bakhsh, M., & Shahbazi, S. (2016). Biocontrol activities of gamma induced mutants of Trichoderma harzianum against some soilborne fungal pathogens and their DNA fingerprinting. Iranian Journal of Biotechnology, 14(4), 260.
Abioye, O. P., Oyewole, O. A., Oyeleke, S. B., Adeyemi, M. O., & Orukotan, A. A. (2018). Biosorption of lead, chromium and cadmium in tannery effluent using indigenous microorganisms. Brazilian Journal of Biological Sciences, 5(9), 25-32.
Aebi, H. (1984). [13] Catalase in vitro. Methods in Enzymology, 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
Alariqi, S. A., Kumar, A. P., Rao, B. S. M., & Singh, R. P. (2006). Biodegradation of γ-sterilised biomedical polyolefins under composting and fungal culture environments. Polymer Degradation and Stability, 91(5), 1105-1116.
Aleem, B., Rashid, M. H., Zeb, N., Saqib, A., Ihsan, A., Iqbal, M., & Ali, H. (2018). Random mutagenesis of super Koji (Aspergillus oryzae): improvement in production and thermal stability of α-amylases for maltose syrup production. BMC Microbiology, 18(1), 1-13.
Barceló, J. U. A. N., & Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress: a review. Journal of plant nutrition, 13(1), 1-37.
Dadachova, E., Bryan, R. A., Huang, X., Moadel, T., Schweitzer, A. D., Aisen, P., ... & Casadevall, A. (2007). Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PloS one, 2(5), e457.
de Queiroz Baptista, N. M., Solidônio, E. G., de Arruda, F. V. F., de Melo, E. J. V., de Azevedo Callou, M. J., de Miranda, R., ... & de Gusmão, N. B. (2015). Effects of gamma radiation on enzymatic production of lignolytic complex by filamentous fungi. African Journal of Biotechnology, 14(7), 612-621.
Fridovich, I. (1989). Superoxide dismutases: an adaptation to a paramagnetic gas. Journal of Biological Chemistry, 264(14), 7761-7764.
Frisvad, J. C., & Filtenborg, O. (1989). Terverticillate penicillia: chemotaxonomy and mycotoxin production. Mycologia, 81(6), 837-861.
Geweely, N. S., & Nawar, L. S. (2006). Sensitivity to gamma irradiation of post-harvest pathogens of pear. Int J Agric Biol, 8(6), 710-716.
Huang, C., Lai, C., Xu, P., Zeng, G., Huang, D., Zhang, J., ... & Wang, R. (2017). Lead-induced oxidative stress and antioxidant response provide insight into the tolerance of Phanerochaete chrysosporium to lead exposure. Chemosphere, 187, 70-77.
Huma, T., Rashid, M. H., Javed, M. R., & Ashraf, A. (2012). Gamma ray mediated mutagenesis of Phialocephala humicola: effect on kinetics and thermodynamics of a-amylase production. African Journal of Microbiology Research, 6(22), 4639-4646.
Iftikhar T, Mubashirniaz M, Abbas QS, Zia MA, Ashraf I, Lee KJ, Haq UI (2010) Mutation induced enhanced biosynthesis of lipases by Rhizopus oligosporus var microspores. Pak. J. Bot. 42(2):1235-1249.
Igiri, B. E., Okoduwa, S. I., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. Journal of toxicology, 2018:1-16.
Kava-Cordeiro, V., Luna-Alves-Lima, E. A., & Azevedo, J. L. (1995). Survival and mutant production induced by mutagenic agents in Metarhizium anisopliae. Scientia Agricola, 52(3), 548-554.
Krumova, E., Pashova, S., Dolashka-Angelova, P., & Angelova, M. (2011). Adaptive Response of Humicola Lutea to Copper Exposure. Biotechnology & Biotechnological Equipment, 25(sup1), 64-71.
Lorenzo-Gutiérrez, D., Gómez-Gil, L., Guarro, J., Roncero, M. I. G., Fernández-Bravo, A., Capilla, J., & López-Fernández, L. (2019). Role of the Fusarium oxysporum metallothionein Mt1 in resistance to metal toxicity and virulence. Metallomics, 11(7), 1230-1240.
Manal T. El Sayed, Ashraf S.A. El-Sayed (2020) Bioremediation and tolerance of zinc ions using Fusarium solani. Heliyon. 6 : e05048.
Mishra, A., & Malik, A. (2012). Simultaneous bioaccumulation of multiple metals from electroplating effluent using Aspergillus lentulus. water research, 46(16), 4991-4998.
Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lungs and liver. Biochim. Biophys. Acta.582: 67–78.
Pal, S. K., & Das, T. K. (2005). Biochemical characterization of N-methyl N’-nitro-N-nitrosoguanidine-induced cadmium resistant mutants ofAspergillus niger. Journal of biosciences, 30(5), 639-646.
Paoletti, F., & Mocali, A. (1990). [18] Determination of superoxide dismutase activity by purely chemical system based on NAD (P) H oOxidation. Methods in enzymology, 186, 209-220. https://doi.org/10.1016/0076-6879(90)86110-H
Robertson, K. L., Mostaghim, A., Cuomo, C. A., Soto, C. M., Lebedev, N., Bailey, R. F., & Wang, Z. (2012). Adaptation of the black yeast Wangiella dermatitidis to ionizing radiation: molecular and cellular mechanisms. PloS one, 7(11), e48674.
Rudakiya, D. M., Iyer, V., Shah, D., Gupte, A., & Nath, K. (2018). Biosorption potential of phanerochaete chrysosporium for arsenic, cadmium, and chromium removal from aqueous solutions. Global Challenges, 2(12), 1800064.
Singh, R., Singh, D., & Singh, A. (2016). Radiation sterilization of tissue allografts: A review. World Journal of Radiology, 8(4), 355.
Srivastava, S., & Thakur, I. S. (2006). Biosorption potency of Aspergillus niger for removal of chromium (VI). Current microbiology, 53(3), 232-237.
Tarekegn, M. M., Salilih, F. Z., & Ishetu, A. I. (2020). Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food & Agriculture, 6(1), 1783174.
Viarengo, A., Ponzano, E., Dondero, F., & Fabbri, R. (1997). A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Marine Environmental Research, 44(1), 69-84.
Xu, C., Ma, F., & Zhang, X. (2009). Lignocellulose degradation and enzyme production by Irpex lacteus CD2 during solid-state fermentation of corn stover. Journal of bioscience and bioengineering, 108(5), 372-375.
Statistics
512 Views | 506 Downloads
How to Cite
Das, D., Chakraborty, D., Chakraborty, A., & Santra, S. (2021). Response in Cadmium Tolerance of Penicillium cyclopium Westling Subsequent to Exposure to Gamma Irradiation. International Journal of Advancement in Life Sciences Research, 4(2), 34-40. https://doi.org/https://doi.org/10.31632/ijalsr.2021.v04i02.005