Anti-Diabetic and Free Radical Scavenging Activity of Phytochemicals from Caesalpinia bonducella
Abstract
Diabetes mellitus is a metabolic disease resulted with high blood glucose levels due to oxidative stress that leads to many complications. Natural compounds derived from herbal plants are alternative source that increasing globally in the process of diabetes drug development. The present study investigates the potential of plant natural compounds for its therapeutic capability to treat diabetic mellitus. Phytochemicals were extracted and purified from seeds of the plant Caesalpinia bonducella. The functional group in Caesalpinia bonducellawas confirmed by UV-VIS and FTIR spectroscopic technique. The seed extract's in vitro antioxidant properties in various concentration (0.25 to 1 g/mL) were carried out against the DPPH and H2O2 onion radical scavenging assay. In vitro studies of anti-diabetic activity were also evaluated by inhibiting key enzymes that are involved in glucose metabolism such as alpha amylase. The seed extract was found to inhibit the enzyme responsible for glucose metabolism and so maximum inhibition was observed in 0.25 mg/mL and the compound was found to be highly reactive against free radicals. In the DPPH assay, the plant seed extract has a maximum inhibitory activity of 92.04% at high concentration. Additionally, for the H2O2 scavenging test, the inhibition of the plant seed extract at 0.75 g/mL concentration was 88.3%. This suggests that the plant’s phytocompounds may offer therapeutic benefits for the treatment of diabetes and conditions linked to oxidative stress. In vivo investigations of the study's findings are further necessary to validate the phytocomplex's efficacy and open the door to the creation of cutting-edge treatments for antioxidants and diabetes.
Downloads
References
Akhtar, M. S., Rafiullah, M., Shehata, W. A., Hossain, A., & Ali, M. (2022). Comparative phytochemical, thin layer chromatographic profiling and antioxidant activity of extracts from some Indian herbal drugs. Journal of Bioresources and Bioproducts, 7(2), 128-134. https://www.sciencedirect.com/science/article/pii/S2369969822000019?via%3Dihub
Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), 1-23. https://doi.org/10.3390/plants6040042
Auwal, M.S., Saka, S., Mairiga, I.A., Sanda, K.A., Shuaibu, A., & Ibrahim, A. (2014). Preliminary phytochemical and elemental analysis of aqueous and fractionated pod extracts of Acacia nilotica (Thorn mimosa). Vet Res Forum. 5(2), 95-100. PMC4279630.
Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C. M. (2022). Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules, 27(4), 1326. https://doi.org/10.3390/molecules27041326
Bhatti, J. S., Sehrawat, A., Mishra, J., Sidhu, I. S., Navik, U., Khullar, N., ... & Reddy, P. H. (2022). Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biology and Medicine, 184, 114-134. https://pubmed.ncbi.nlm.nih.gov/35398495/
Dey, S. R., Dutta, S., & De, M. (2020). Neuro-Steroid Compound Found by GC-MS Analysis of The Methanolic Extract of The Leaves of Aegle marmelos (L) Corr. International Journal of Advancement in Life Sciences Research, 51-56. https://doi.org/10.31632/ijalsr.20.v03i04.006
Du, X. L., Edelstein, D., Rossetti, L., Fantus, I. G., Goldberg, H., Ziyadeh, F., ... & Brownlee, M. (2000). Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proceedings of the National Academy of Sciences, 97(22), 12222-12226. https://doi.org/10.1073/pnas.97.22.12222
Dubale, S., Kebebe, D., Zeynudin, A., Abdissa, N., & Suleman, S. (2023). Phytochemical screening and antimicrobial activity evaluation of selected medicinal plants in Ethiopia. Journal of experimental pharmacology, 51-62. https://doi.org/10.2147/jep.s379805
Fadheel, Q. (2018). Prevalence of Diabetes Mellitus and It’s Complications in Iraq. International Journal of Pharmaceutical Quality Assurance. 9(2),109-16. http://doi.org/10.25258/ijpqa.v9i2.13631
Gul, R., Jan, S. U., Faridullah, S., Sherani, S., & Jahan, N. (2017). Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to Balochistan. The Scientific World Journal, 2017(1), 5873648. https://doi.org/10.1155/2017/5873648
Jaber, S. A. (2023). In vitro alpha-amylase and alpha-glucosidase inhibitory activity and in vivo antidiabetic activity of Quercus coccifera (Oak tree) leaves extracts. Saudi Journal of Biological Sciences, 30(7), 103688. https://doi.org/10.1016/J.SJBS.2023.103688
Joshi, T., Mandal, S. K., Puri, S., Asati, V., Deepa, P. R., & Sharma, P. K. (2023). Investigating the antioxidant activity enhancer effect of Cyamopsis tetragonoloba seed extract on phenolic phytochemicals. Frontiers in plant science, 14, 1131173. https://doi.org/10.3389/fpls.2023.1131173
Kancherla, N., Dhakshinamoothi, A., Chitra, K., & Komaram, R. B. (2019). Preliminary analysis of phytoconstituents and evaluation of anthelminthic property of Cayratia auriculata (in vitro). Maedica, 14(4), 350. https://doi.org/10.26574/maedica.2019.14.4.350
Kashtoh, H., & Baek, K. H. (2023). New insights into the latest advancement in α-amylase inhibitors of plant origin with anti-diabetic effects. Plants, 12(16), 2944. https://doi.org/10.3390/PLANTS12162944
Khan, M. I., Karima, G., Khan, M. Z., Shin, J. H., & Kim, J. D. (2022). Therapeutic effects of saponins for the prevention and treatment of cancer by ameliorating inflammation and angiogenesis and inducing antioxidant and apoptotic effects in human cells. International journal of molecular sciences, 23(18), 10665.https://www.mdpi.com/1422-0067/23/18/10665
Kolluru, G. K., Bir, S. C., & Kevil, C. G. (2012). Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. International journal of vascular medicine, 2012(1), 918267. https://pubmed.ncbi.nlm.nih.gov/22611498/
Konan, A. B., Bléyéré, M. N., Amonkan, A. K., Bouafou, M. K., & Datté, J. Y. (2014). Why African traditional birth attendants used Ceasalpinia bonduc leaves to facilitate childbirth in parturient women. International Journal of Pharmacy Review & Research, 4(1), 11-16.
Le Thi, V. A., Nguyen, N. L., Nguyen, Q. H., Van Dong, Q., Do, T. Y., & Nguyen T, K. O. (2021). Phytochemical Screening and Potential Antibacterial Activity of Defatted and Nondefatted Methanolic Extracts of Xao Tam Phan (Paramignya trimera (Oliv.) Guillaum) Peels against Multidrug‐Resistant Bacteria. Scientifica, 2021(1), 4233615. https://doi.org/10.1155/2021/4233615
María, R., Shirley, M., Xavier, C., Jaime, S., David, V., Rosa, S., & Jodie, D. (2018). Preliminary phytochemical screening, total phenolic content and antibacterial activity of thirteen native species from Guayas province Ecuador. Journal of King Saud University-Science, 30(4), 500-505. https://doi.org/10.1016/j.jksus.2017.03.009
Masschelin, P. M., Cox, A. R., Chernis, N., & Hartig, S. M. (2020). The impact of oxidative stress on adipose tissue energy balance. Frontiers in physiology, 10, 1638. https://doi.org/10.3389/fphys.2019.01638
Mawlood, M. K., Dawood, A. A., & Abdul-Razzaq, N. E. (2022). Identification of Flavonoids in Artemisia annua L. by High-performance Liquid Chromatography and Evaluate the Antioxidant Activity. Technology, 12(4), 1820-1824. https://doi.org/10.25258/ijddt.12.4.55
Nadeem, H. R., Akhtar, S., Sestili, P., Ismail, T., Neugart, S., Qamar, M., & Esatbeyoglu, T. (2022). Toxicity, antioxidant activity, and phytochemicals of basil (Ocimum basilicum L.) leaves cultivated in Southern Punjab, Pakistan. Foods, 11(9), 1239. https://doi.org/10.3390/foods11091239
Najeh, A.H., & Mahmood KAA R. (2022).In-vitro Preliminary Evaluation of Antioxidant and Anticoagulant Activity of Novel N-Phenyl Hydrazine 1-Carbothioamide Derivatives of (2-Methyl-3-(Substituted Thio)Propanoyl) Proline. International Journal of Drug Delivery Technology. 12(3),1156-1161. https://doi.org/10.25258/ijddt.12.3.38
Ogunyemi, O. M., Gyebi, G. A., Saheed, A., Paul, J., Nwaneri-Chidozie, V., Olorundare, O., ... & Olaiya, C. O. (2022). Inhibition mechanism of alpha-amylase, a diabetes target, by a steroidal pregnane and pregnane glycosides derived from Gongronema latifolium Benth. Frontiers in molecular biosciences, 9, 866719. https://doi.org/10.3389/FMOLB.2022.866719
Ojo, O. A., Oyetayo, F. L., Oladipo, A. S., & Oluwatosin, V. O. (2024). Polyphenolic contents, free radical scavenging properties, and enzyme inhibitory activities of Acacia nilotica (L.) delile seed and pod extracts. Vegetos, 37(1), 296-304. https://doi.org/10.1007/s42535-023-00599-0
Omar, N., Ismail, C. A. N., & Long, I. (2022). Tannins in the treatment of diabetic neuropathic pain: Research progress and future challenges. Frontiers in Pharmacology, 12, 805854. https://doi.org/10.3389/fphar.2021.805854
Orellana, A. M., Kinoshita, P. F., Leite, J. A., Kawamoto, E. M., & Scavone, C. (2016). Cardiotonic steroids as modulators of neuroinflammation. Frontiers in endocrinology, 7, 10. https://doi.org/10.3389/fendo.2016.00010.
P, S., Zinjarde, S. S., Bhargava, S. Y., & Kumar, A. R. (2011). Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC complementary and alternative medicine, 11(1), 1-10. https://doi.org/10.1186/1472-6882-11-5
Pant, D. R., Pant, N. D., Yadav, U. N., & Khanal, D. P. (2017). Phytochemical screening and study of antioxidant, antimicrobial, antidiabetic, anti-inflammatory and analgesic activities of extracts from stem wood of Pterocarpus marsupium Roxburgh. Journal of Intercultural Ethnopharmacology, 6(2), 170. https://doi.org/10.5455/jice.20170403094055
Pasupuleti, V. R., Arigela, C. S., Gan, S. H., Salam, S. K. N., Krishnan, K. T., Rahman, N. A., & Jeffree, M. S. (2020). A review on oxidative stress, diabetic complications, and the roles of honey polyphenols. Oxidative medicine and cellular longevity, 2020(1), 8878172. https://doi.org/10.1155/2020/8878172
Ponnusamy, S., Ravindran, R., Zinjarde, S., Bhargava, S., & Ravi Kumar, A. (2011). Evaluation of traditional Indian antidiabetic medicinal plants for human pancreatic amylase inhibitory effect in vitro. Evidence‐Based Complementary and Alternative Medicine, 2011(1), 515647. https://doi.org/10.1155/2011/515647
Poovitha, S., & Parani, M. (2016). In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC complementary and alternative medicine, 16, 1-8. https://doi.org/10.1186/s12906-016-1085-1
Rahimi-Madiseh, M., Malekpour-Tehrani, A., Bahmani, M., & Rafieian-Kopaei, M. (2016). The research and development on the antioxidants in prevention of diabetic complications. Asian Pacific journal of tropical medicine, 9(9), 825-831. https://doi.org/10.1016/j.apjtm.2016.07.001
Seuring, T., Archangelidi, O., & Suhrcke, M. (2015). The economic costs of type 2 diabetes: a global systematic review. Pharmacoeconomics, 33, 811-831. http://doi.org/10.1007/s40273-015-0268-9
Shamran, S. J., & Jaffat, H. S. (2020). Study the Effect of Vitamins (C and E) on Oxidative Stress and Antioxidants Changes Induced by VCM in Male Rats. International Journal of pharmaceutical quality assurance. 11(3), 430-4. https://doi.org/10.25258/ijpqa.11.3.20
Shaw, R., Sarkar, B., Mondol, R., Sadhukhan, P., Karim, M. A., & Ghosh, K. (2021). Ocimum sanctum L., Phytochemistry and Effect on Cancer Cells. In: Chakraborty, S. B., Mitra, S., Mondal, P. K., Poddar, S., Bhaumik, A. (Eds.), Recent Advancement in Biological Sciences. Lincoln University College, Malaysia in collaboration with Lincoln Research and Publications Limited, Australia.70-72. https://doi.org/10.46977/book.2021.rabs
Shukla, S., Mehta, A., Mehta, P., Vyas, S. P., Shukla, S., & Bajpai, V. K. (2010). Studies on anti-inflammatory, antipyretic and analgesic properties of Caesalpinia bonducella F. seed oil in experimental animal models. Food and Chemical Toxicology, 48(1), 61-64. https://doi.org/10.1016/j.fct.2009.09.015
Soppert, J., Lehrke, M., Marx, N., Jankowski, J., & Noels, H. (2020). Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Advanced drug delivery reviews, 159, 4-33. https://pubmed.ncbi.nlm.nih.gov/32730849/
Tupe, R. S., Kemse, N. G., & Khaire, A. A. (2013). Evaluation of antioxidant potentials and total phenolic contents of selected Indian herbs powder extracts. International Food Research Journal, 20(3), 1053.
Wickramaratne, M. N., Punchihewa, J. C., & Wickramaratne, D. B. M. (2016). In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC complementary and alternative medicine, 16, 1-5. https://doi.org/10.1186/s12906-016-1452-y
Yuan, T., Yang, T., Chen, H., Fu, D., Hu, Y., Wang, J., ... & Xie, X. (2019). New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox biology, 20, 247-260. https://www.sciencedirect.com/science/article/pii/S2213231718307377?via%3Dihub
Zou, L., Li, H., Ding, X., Liu, Z., He, D., Kowah, J. A., ... & Liu, X. (2022). A Review of The Application of Spectroscopy to Flavonoids from Medicine and Food Homology Materials. Molecules, 27(22), 7766. https://doi.org/10.3390/molecules27227766
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.