The Ethno-pharmaceuticals Fighting UTI-Resistant Bacteria: Synergistic Potential Exploration
Abstract
Urinary tract infections (UTIs) are a pressing global health concern, exacerbated by the rise of antibiotic-resistant bacterial strains. Bioprospecting, involving the exploration of natural resources for therapeutic potential, offers a promising approach to tackling this challenge. Ethnopharmaceuticals, traditional medicinal practices and remedies from indigenous communities, present a valuable source for discovering novel bioactive compounds. This review comprehensively evaluates the bioprospecting of ethnopharmaceuticals and their synergistic potential against antibiotic-resistant UTIs. Drawing from existing literature, we analyze a diverse range of ethnopharmaceuticals, elucidating their mechanisms of action and experimental evidence supporting synergistic interactions. Ethno-pharmaceuticals encompass various plant-based extracts, traditional herbal remedies, and indigenous healing practices utilized across generations to manage infections. We examine the scientific evidence supporting their efficacy in treating UTIs, clarifying their bioactive components and modes of action. Integration of traditional knowledge with modern scientific methodologies is crucial to addressing contemporary health challenges. By harnessing the synergistic potential of ethno-pharmaceuticals, we can develop alternative therapies for UTIs, offering hope for improved treatment outcomes amidst antibiotic resistance.
Downloads
References
Amari, S., Karbab, A., Charef, N., Arrar, L., & Mubarak, M. S. (2023). Anti-urolithiatic, antibacterial, anti-inflammatory and analgesic effects of Erica arborea flowers and leaves hydromethanolic extracts: An ethnopharmacological study. Saudi Journal of Biological Sciences, 30(10). https://doi.org/10.1016/j.sjbs.2023.103785
Asma, S. T., Imre, K., Morar, A., Imre, M., Acaroz, U., Shah, S. R. A., ... & Zhu, K. (2022). Natural strategies as potential weapons against bacterial biofilms. Life, 12(10), 1618. https://doi.org/10.3390/life12101618
Basavegowda, N., & Baek, K. H. (2022). Combination strategies of different antimicrobials: an efficient and alternative tool for pathogen inactivation. Biomedicines, 10(9), 2219. https://doi.org/10.3390/biomedicines10092219
Brayn, C. P., & Smith, G. E. (1930). The papyrus ebers, translated from the german version. Letchworth, Herts: The Guardian City Press LTD.
Butler, M. S., Buss, A. D., & Evans-Illidge, E. (2014). Natural product libraries: Assembly, maintenance, and screening. Planta Medica, 80(14), 1161-1170. https://doi.org/10.1055/s-0033-1360109
Carson, C. F., Mee, B. J., & Riley, T. V. (2002). Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrobial agents and chemotherapy, 46(6), 1914-1920. https://doi.org/10.1128/AAC.46.6.1914-1920.2002
Chaachouay, N., & Zidane, L. (2024). Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs and Drug Candidates, 3(1), 184-207. https://doi.org/10.3390/ddc3010011
Che, C. T., Wong, M. S., & Lam, C. W. (2016). Natural Products from Chinese Medicines with Potential Benefits to Bone Health. Molecules (Basel, Switzerland), 21(3), 239. https://doi.org/10.3390/molecules21030239
Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and molecular biology reviews, 65(2), 232-260. https://doi.org/10.1128/mmbr.65.2.232-260.2001
Chung, M. J., Park, J. K., Park, Y. I., Cho, S. Y., & Chi, H. Y. (2014). Anti-inflammatory effects of fermented soybean products in lipopolysaccharide-stimulated RAW 264.7 murine macrophages. Journal of Medicinal Food, 17(7), 763-770. https://doi.org/10.1007/s12272-011-0418-3
Clardy, J., Fischbach, M. A., & Walsh, C. T. (2006). New antibiotics from bacterial natural products. Nature biotechnology, 24(12), 1541-1550.. https://doi.org/10.1038/nbt1266
Cordell, G. A. (2013). Fifty years of alkaloid biosynthesis in Phytochemistry. Phytochemistry, 91, 29-51. https://doi.org/10.1016/j.phytochem.2012.05.012
Cushnie, T. T., Cushnie, B., Echeverría, J., Fowsantear, W., Thammawat, S., Dodgson, J. L., ... & Clow, S. M. (2020). Bioprospecting for antibacterial drugs: a multidisciplinary perspective on natural product source material, bioassay selection and avoidable pitfalls. Pharmaceutical research, 37(7), 125. https://doi.org/10.1007/s11095-020-02849-1.
Dai, C., Lin, J., Li, H., Shen, Z., Wang, Y., Velkov, T., & Shen, J. (2022). The natural product curcumin as an antibacterial agent: Current achievements and problems. Antioxidants, 11(3), 459. https://doi.org/10.3390/antiox11030459.
Eliopoulos, G. M., & Moellering, R. C. (1996). Antimicrobial combinations. In Antibiotics in laboratory medicine (pp. 330-396). Lippincott Williams & Wilkins.
Elisabetsky, E., & Wannmacher, L. (1993). The status of ethnopharmacology in Brazil. Journal of ethnopharmacology, 38(2-3), 129-135. https://doi.org/10.1016/0378-8741(93)90008-s
Eze, C. N., Onyejiaka, C. K., Ihim, S. A., Ayoka, T. O., Aduba, C. C., Nwaiwu, O., & Onyeaka, H. (2023). Bioactive compounds by microalgae and potentials for the management of some human disease conditions. AIMS microbiology, 9(1), 55. https://doi.org/10.3934/microbiol.2023004
Flores-Mireles, A. L., Walker, J. N., Caparon, M., & Hultgren, S. J. (2015). Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature reviews microbiology, 13(5), 269-284. https://doi.org/10.1038/nrmicro3432
Foxman, B. (2014). Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infectious Disease Clinics, 28(1), 1-13. https://doi.org/10.1016/j.idc.2013.09.003
Galinier, A., Delan-Forino, C., Foulquier, E., Lakhal, H., & Pompeo, F. (2023). Recent advances in peptidoglycan synthesis and regulation in bacteria. Biomolecules, 13(5), 720. https://doi.org/10.3390/biom13050720
Gardiner BJ, Stewardson AJ, Abbott IJ, Peleg AY. Nitrofurantoin and fosfomycin for resistant urinary tract infections: old drugs for emerging problems. Aust Prescr. 2019 Feb;42(1):14-19. https://doi.org/10.18773/austprescr.2019.002
González-Lamothe, R., Mitchell, G., Gattuso, M., Diarra, M. S., Malouin, F., & Bouarab, K. (2009). Plant antimicrobial agents and their effects on plant and human pathogens. International journal of molecular sciences, 10(8), 3400-3419. https://doi.org/10.3390/ijms10083400
Gupta, K., Hooton, T. M., Naber, K. G., Wullt, B., Colgan, R., Miller, L. G., ... & Soper, D. E. (2011). International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clinical infectious diseases, 52(5), e103-e120. https://doi.org/10.1093/cid/ciq257
Gupta, R., & Sharma, S. (2022). Role of alternatives to antibiotics in mitigating the antimicrobial resistance crisis. Indian Journal of Medical Research, 156(3), 464-477. https://doi.org/10.4103/ijmr.IJMR_3514_20
Hammouti, Y., Elbouzidi, A., Taibi, M., Bellaouchi, R., Loukili, E. H., Bouhrim, M., ... & Addi, M. (2023). Screening of Phytochemical, Antimicrobial, and Antioxidant Properties of Juncus acutus from Northeastern Morocco. Life, 13(11), 2135. https://doi.org/10.3390/life13112135
Hooper, D. C., & Jacoby, G. A. (2016). Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harbor perspectives in medicine, 6(9). https://doi.org/10.1101/cshperspect.a025320
Hyldgaard, M., Mygind, T., & Meyer, R. L. (2012). Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in microbiology, 3, 12. https://doi.org/10.3389/fmicb.2012.00012
Ibáñez, B., Melero, A., Montoro, A., Merino-Torres, J. F., Soriano, J. M., & San Onofre, N. (2023). A Narrative Review of the Herbal Preparation of Ayurvedic, Traditional Chinese, and Kampō Medicines Applied as Radioprotectors. Antioxidants, 12(7), 1437. https://doi.org/10.3390/antiox12071437
Jakobsen, T. H., Bragason, S. K., Phipps, R. K., & Christensen, L. D., Gennip M. V., Alhede, M., Skindersoe, M., Larsen, T.O., Høiby, N., Bjarnsholt, T., Givskov, M. (2012), Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Applied and Environmental Microbiology. 78(7), 2410-2421 https://doi.org/10.1128/AEM.05992-11
Kępińska-Pacelik, J., & Biel, W. (2023). Turmeric and Curcumin—Health-Promoting Properties in Humans versus Dogs. International Journal of Molecular Sciences, 24(19). https://doi.org/10.3390/ijms241914561
Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: an overview. The scientific world journal, 2013. https://doi.org/10.1155/2013/162750
Kunnumakkara, A. B., Hegde, M., Parama, D., Girisa, S., Kumar, A., Daimary, U. D., ... & Aggarwal, B. B. (2023). Role of turmeric and curcumin in prevention and treatment of chronic diseases: Lessons learned from clinical trials. ACS Pharmacology & Translational Science, 6(4), 447-518. https://doi.org/10.1021/acsptsci.2c00012
Liu, M., & Quinn, R. J. (2019). Fragment-based screening with natural products for novel anti-parasitic disease drug discovery. Expert Opinion on Drug Discovery, 14(12), 1283-1295. https://doi.org/10.1080/17460441.2019.1653849
Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American journal of clinical nutrition, 79(5), 727-747. https://doi.org/10.1093/ajcn/79.5.727
Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules, 23(4), 795. https://doi.org/10.3390/molecules23040795
Martinez, J. L. (2009). Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 157(11), 2893-2902. https://doi.org/10.1016/j.envpol.2009.05.051
Millum, J. (2010). How should the benefits of bioprospecting be shared?. Hastings Center Report, 40(1), 24-33. https://doi.org/10.1353/hcr.0.0227
Naga, N. G., El-Badan, D. E., Ghanem, K. M., & Shaaban, M. I. (2023). It is the time for quorum sensing inhibition as alternative strategy of antimicrobial therapy. Cell Communication and Signaling, 21(1), 1-14. https://doi.org/10.1186/s12964-023-01154-9
Nasrollahian, S., Graham, J. P., & Halaji, M. (2024). A review of the mechanisms that confer antibiotic resistance in pathotypes of E. coli. Frontiers in Cellular and Infection Microbiology, 14. https://doi.org/10.3389/fcimb.2024.1387497
Newman, D. J., & Cragg, G. M. (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of natural products, 75(3), 311-335. https://doi.org/10.1021/np200906s
Newman, D. J., & Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to 2014. Journal of natural products, 79(3), 629-661.https://doi.org/10.1021/acs.jnatprod.5b01055
Oakenfull, D., & Sidhu, G. S. (1990). Could saponins be a useful treatment for hypercholesterolaemia?. European journal of clinical nutrition, 44(1), 79-88.
Odds, F. C. (2003). Synergy, antagonism, and what the chequerboard puts between them. Journal of antimicrobial chemotherapy, 52(1), 1. https://doi.org/10.1093/jac/dkg301
Pancu, D. F., Scurtu, A., Macasoi, I. G., Marti, D., Mioc, M., Soica, C., ... & Dehelean, C. (2021). Antibiotics: conventional therapy and natural compounds with antibacterial activity—a pharmaco-toxicological screening. Antibiotics, 10(4), 401. https://doi.org/10.3390/antibiotics10040401
Paul, R. (2018). State of the globe: Rising antimicrobial resistance of pathogens in urinary tract infection. Journal of global infectious diseases, 10(3), 117-118. https://doi.org/10.4103/jgid.jgid_104_17
Pirintsos, S., Panagiotopoulos, A., Bariotakis, M., Daskalakis, V., Lionis, C., Sourvinos, G., ... & Castanas, E. (2022). From traditional ethnopharmacology to modern natural drug discovery: A methodology discussion and specific examples. Molecules, 27(13), 4060. https://doi.org/10.3390/molecules27134060
Pirintsos, S., Panagiotopoulos, A., Bariotakis, M., Daskalakis, V., Lionis, C., Sourvinos, G., ... & Castanas, E. (2022). From traditional ethnopharmacology to modern natural drug discovery: A methodology discussion and specific examples. Molecules, 27(13), 4060. https://doi.org/10.3390/molecules27134060
Plaper, A., Golob, M., Hafner, I., Oblak, M., Šolmajer, T., & Jerala, R. (2003). Characterization of quercetin binding site on DNA gyrase. Biochemical and biophysical research communications, 306(2), 530-536. https://doi.org/10.1016/s0006-291x(03)01006-4
Pole, S. (2006). Ayurvedic medicine: the principles of traditional practice. Elsevier Health Sciences.
Pothoven, R. (2023). Management of urinary tract infections in the era of antimicrobial resistance. Drug Target Insights, 17, 126-137. https://doi.org/10.33393/dti.2023.2660
Prassas, I., & Diamandis, E. P. (2008). Novel therapeutic applications of cardiac glycosides. Nature reviews Drug discovery, 7(11), 926-935. https://doi.org/10.1038/nrd2682
Ralte, L., Sailo, H., & Singh, Y. T. (2024). Ethnobotanical study of medicinal plants used by the indigenous community of the western region of Mizoram, India. Journal of Ethnobiology and Ethnomedicine, 20(1), 2. https://doi.org/10.1186/s13002-023-00642-z
Rudrappa, T., & Bais, H. P. (2008). Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. Journal of agricultural and food chemistry, 56(6), 1955-1962. https://doi.org/10.1021/jf072591j
Saper, R. B., Kales, S. N., Paquin, J., Burns, M. J., Eisenberg, D. M., Davis, R. B., & Phillips, R. S. (2004). Heavy metal content of ayurvedic herbal medicine products. Jama, 292(23), 2868-2873. https://doi.org/10.1001/jama.292.23.2868
Schippmann, U., Leaman, D. J., & Cunningham, A. B. (2002). Impact of cultivation and gathering of medicinal plants on biodiversity: global trends and issues. Biodiversity and the ecosystem approach in agriculture, forestry and fisheries.
Shaikh S, Fatima J, Shakil S, Rizvi SM, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci. 2015 Jan;22(1):90-101. https://doi.org/10.1016/j.sjbs.2014.08.002
Shariati, A., Noei, M., Askarinia, M., Khoshbayan, A., Farahani, A., & Chegini, Z. (2024). Inhibitory effect of natural compounds on quorum sensing system in Pseudomonas aeruginosa: a helpful promise for managing biofilm community. Frontiers in Pharmacology, 15. https://doi.org/10.3389/fphar.2024.1350391
Siddiqui, S. A., Erol, Z., Rugji, J., Taşçı, F., Kahraman, H. A., Toppi, V., ... & Castro-Muñoz, R. (2023). An overview of fermentation in the food industry-looking back from a new perspective. Bioresources and Bioprocessing, 10(1), 85. https://doi.org/10.1186/s40643-023-00702-y
Skindersoe, M. E., Ettinger-Epstein, P., Rasmussen, T. B., Bjarnsholt, T., de Nys, R., & Givskov, M. (2008). Quorum sensing antagonism from marine organisms. Marine Biotechnology, 10, 56-63. https://doi.org/10.1007/s10126-007-9036-y
Tandogdu, Z., & Wagenlehner, F. M. (2016). Global epidemiology of urinary tract infections. Current Opinion in Infectious Diseases, 29(1), 73-79. https://doi.org/10.1097/QCO.0000000000000228
Tipper D. J. (1985). Mode of action of beta-lactam antibiotics. Pharmacology & therapeutics, 27(1), 1–35. https://doi.org/10.1016/0163-7258(85)90062-2
Tu, Y. (2011). The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nature medicine, 17(10), 1217-1220. https://doi.org/10.1038/nm.2471
Vaou, N., Stavropoulou, E., Voidarou, C., Tsakris, Z., Rozos, G., Tsigalou, C., & Bezirtzoglou, E. (2022). Interactions between medical plant-derived bioactive compounds: focus on antimicrobial combination effects. Antibiotics, 11(8), 1014. https://doi.org/10.3390/antibiotics11081014
Vattem, D. A., Mihalik, K., Crixell, S. H., & McLean, R. J. (2007). Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia, 78(4), 302-310. https://doi.org/10.1016/j.fitote.2007.03.009
Watve, M. G., Tickoo, R., Jog, M. M., & Bhole, B. D. (2001). How many antibiotics are produced by the genus Streptomyces?. Archives of microbiology, 176, 386-390. https://doi.org/10.1007/s002030100345
Williamson, E. M. (2001). Synergy and other interactions in phytomedicines. Phytomedicine, 8(5), 401-409. https://doi.org/10.1078/0944-7113-00060
Wood, J. N. (2015). From plant extract to molecular panacea: a commentary on Stone (1763)‘An account of the success of the bark of the willow in the cure of the agues’. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1666), 20140317. https://doi.org/10.1098/rstb.2014.0317
World Health Organization. (2014). Antimicrobial resistance: global report on surveillance. World Health Organization.
Wright, G. D. (2005). Bacterial resistance to antibiotics: enzymatic degradation and modification. Advanced drug delivery reviews, 57(10), 1451-1470. https://doi.org/10.1016/j.addr.2005.04.002
Wright, G. D. (2016). Antibiotic adjuvants: rescuing antibiotics from resistance. Trends in microbiology, 24(11), 862-871. https://doi.org/10.1016/j.tim.2016.06.009
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.