Antimicrobial Susceptibility Profiles of Staphylococcus aureus, Streptococcus pyogenes and Bacillus subtilis Various Antibiotics
Abstract
The rise in bacterial resistance to antibiotics necessitates the development of new antimicrobials. Pathogenic microorganisms from hospitals, communities, and environments pose significant health risks exacerbated by the uncontrolled use of antibiotics, highlighting the urgent need for innovative solutions. To address antibiotic resistance, analysed the antimicrobial activity of Bacillus subtilis, Staphylococcus aureus, and Streptococcus pyogenes using biochemical assays with some antibiotics: tetracycline, erythromycin, trimethoprim, rifampicin, hygromycin, and streptomycin. The study employed agar diffusion and microtiter methods to assess antimicrobial efficacy. Results indicated that all bacterial cultures were sensitive to the antibiotics tested. Bacillus subtilis exhibited high susceptibility to tetracycline, erythromycin, hygromycin, and streptomycin, with moderate susceptibility to trimethoprim and rifampicin. S. aureus showed sensitivity to the same antibiotics but to a lesser extent than B. subtilis. S. pyogenes were also susceptible to tetracycline, erythromycin, hygromycin, and streptomycin. Notably, the non-pathogenic B. subtilis demonstrated greater antibiotic susceptibility than the pathogenic S. aureus and S. pyogenes. All three bacteria exhibited consistent antibiotic susceptibility, demonstrating inhibition zones for all seven antibiotics. This study aids in developing effective treatments for resistant bacteria, contributing to combating bacterial diseases.
Downloads
References
Agha, H. M., Abdulhameed, A. S., Jawad, A. H., Sidik, N. J., Aazmi, S., Wilson, L. D., & ALOthman, Z. A. (2024). Food-grade algae modified Schiff base-chitosan benzaldehyde composite for cationic methyl violet 2B dye removal: RSM statistical parametric optimization. International journal of phytoremediation, 26(4), 459-471. https://doi.org/10.1080/15226514.2023.2246596
Ahmed, I. A., Abdul-Aziz, A., Sidik, N. J., & Allaq, A. A. (2021). Antioxidant, antibacterial, and phytochemical screening of ethanolic crude extracts of Libyan Peganum harmala seeds. Journal of Pharmaceutical Research International, 33(13), 74-82. https://doi.org/10.9734/jpri/2021/v33i1331268
Allaq, A. A., Sidik, N. J., Abdul-Aziz, A., Alkamil, A. M. A., Elengoe, A., Yahya, E. B., & Abdulsamad, M. A. (2021). Epidemiological studies of the novel Coronavirus (COVID-19) in Libya. Pakistan Journal of Biotechnology, 18(1-2)), 7-16. https://doi.org/10.34016/pjbt.2021.18.1.7
Anderson, M., Cecchini, M., & Mossialos, E. (Eds.). (2020). Challenges to tackling antimicrobial resistance: economic and policy responses. Cambridge University Press.
Andersson, D. I., Balaban, N. Q., Baquero, F., Courvalin, P., Glaser, P., Gophna, U., ... & Tønjum, T. (2020). Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS microbiology reviews, 44(2), 171-188. https://doi.org/10.1093/femsre/fuaa001
Avire, N. J., Whiley, H., & Ross, K. (2021). A review of Streptococcus pyogenes: public health risk factors, prevention and control. Pathogens, 10(2), 248.1-17. https://doi.org/10.3390/pathogens10020248
Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of pharmaceutical analysis, 6(2), 71-79.https://doi.org/10.1016/j.jpha.2015.11.005
Baquero, F., & Levin, B. R. (2021). Proximate and ultimate causes of the bactericidal action of antibiotics. Nature Reviews Microbiology, 19(2), 123-132. https://doi.org/10.1038/s41579-020-00443-1
Camara, M., Dieng, A., & Boye, C. S. B. (2013). Antibiotic susceptibility of streptococcus pyogenes isolated from respiratory tract infections in dakar, senegal. Microbiology insights, 6, MBI-S12996. https://doi.org/10.4137/MBI.S1299
Cattoir, V. (2016). Mechanisms of antibiotic resistance.
Chaoui, L., Mhand, R., Mellouki, F., & Rhallabi, N. (2019). Contamination of the Surfaces of a Health Care Environment by Multidrug‐Resistant (MDR) Bacteria. International journal of microbiology, 2019(1), 3236526. https://doi.org/10.1155/2019/3236526
Chaves, N., Santiago, A., & Alías, J. C. (2020). Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants, 9(1), 76. https://doi.org/10.3390/antiox9010076
Chinemerem Nwobodo, D., Ugwu, M. C., Oliseloke Anie, C., Al‐Ouqaili, M. T., Chinedu Ikem, J., Victor Chigozie, U., & Saki, M. (2022). Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. Journal of clinical laboratory analysis, 36(9), e24655. https://doi.org/10.1002/jcla.24655
Choo, E. J. (2017). Community-associated methicillin-resistant Staphylococcus aureus in nosocomial infections. Infection & chemotherapy, 49(2), 158–159. https://doi.org/10.3947/ic.2017.49.2.158
Chudobova, D., Dostalova, S., Blazkova, I., Michalek, P., Ruttkay-Nedecky, B., Sklenar, M., ... & Adam, V. (2014). Effect of ampicillin, streptomycin, penicillin and tetracycline on metal resistant and non-resistant Staphylococcus aureus. International journal of environmental research and public health, 11(3), 3233-3255. https://doi.org/10.3390/ijerph110303233
Craig, M. (2019). CDC’s antibiotic resistance threats report, 2019. Extended spectrum β-lactamase (ESBL)-producing Enterobacteriaceae.
Ehling-Schulz, M., Lereclus, D., & Koehler, T. M. (2019). The Bacillus cereus group: Bacillus species with pathogenic potential. Microbiology spectrum, 7(3), 10-1128. https://doi.org/10.1128/microbiolspec.gpp3-0032-2018
Elengoe, A., Ibrahem, K., Allaq, A., & Alabed, A. L. A. B. E. D. (2022). Sociological Impact of COVID-19 on People with Non-Communicable Diseases (NCD) and Long COVID-19 in Young Children: Sociological Impact of COVID-19. Journal of Tropical Life Science, 12(1), 63-71. http://dx.doi.org/10.11594/jtls.12.01.06
El-Gayar, K. E. (2017). Isolation, identification and characterization of Bacillus subtilis from tap water. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 19(4), 817.
Errington, J., & Aart, L. T. van der. (2020). Microbe Profile: Bacillus subtilis: Model organism for cellular development, and industrial workhorse. Microbiology, 166(5), 425–427. https://doi.org/10.1099/mic.0.000922
Ferri, M., Ranucci, E., Romagnoli, P., &Giaccone, V. (2017). Antimicrobial resistance: A global emerging threat to public health systems. Critical Reviews in Food Science and Nutrition, 57(13), 2857–2876. https://doi.org/10.1080/10408398.2015.1077192
Foster, T. J. (2017). Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS microbiology reviews, 41(3), 430-449. https://doi.org/10.1093/femsre/fux007
Fukunaga, B. T., Sumida, W. K., Taira, D. A., Davis, J. W., & Seto, T. B. (2016). Hospital-acquired methicillin-resistant Staphylococcus aureus bacteremia related to medicare antibiotic prescriptions: A state-level analysis. Hawai'i Journal of Medicine & Public Health, 75(10), 303.
Fymat, A. L. (2017). Antibiotics and antibiotic resistance. Biomed J Sci & Tech Res, 1(1), 1–16. https://doi.org/10.26717/BJSTR.2017.01.000117
Goyal, N., Miller, A., Tripathi, M., & Parvizi, J. (2013). Methicillin-resistant Staphylococcus aureus (MRSA): colonisation and pre-operative screening. The bone & joint journal, 95(1), 4-9. https://doi.org/10.1302/0301-620X.95B1.27973
Hamid, M., Mohammed, A., Hamdi, H., Abdulhadi, A., & Alkamil, A. (2022). Overview of effect of plastic waste pollution on Marine environment. J. Asian Scient. Res, 12(4), 260-268. https://doi.org/10.55493/5003.v12i4.4654
Harris, M., Fasolino, T., Ivankovic, D., Davis, N. J., & Brownlee, N. (2023). Genetic factors that contribute to antibiotic resistance through intrinsic and acquired bacterial genes in urinary tract infections. Microorganisms, 11(6), 1407. https://doi.org/10.3390/microorganisms11061407
Hasan, T. H. (2023). Review of Streptococcus pyogenes. Qeios. https://doi.org/10.32388/BCSYBU
Hashemian, S. M. R., Farhadi, T., &Ganjparvar, M. (2018). Linezolid: a review of its properties, function, and use in critical care. Drug Design, Development and Therapy, 1759–1767.
Hassoun, A., Linden, P. K., & Friedman, B. (2017). Incidence, prevalence, and management of MRSA bacteremia across patient populations—a review of recent developments in MRSA management and treatment. Critical Care, 21(1), 1–10. https://doi.org/10.1186/s13054-017-1801-3
Helmy, Y. A., Taha-Abdelaziz, K., Hawwas, H. A. E.-H., Ghosh, S., AlKafaas, S. S., Moawad, M. M. M., Saied, E. M., Kassem, I. I., &Mawad, A. M. M. (2023). Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics, 12(2), 274. https://doi.org/10.3390/antibiotics12020274
Hutchison, C. (2022). Wars and sweets: microbes, medicines and other moderns in and beyond the (ir) antibiotic era. Medical Humanities, 48(3), 359–370. https://doi.org/10.1136/medhum-2021-012366
Hynes, W., & Sloan, M. (2016). Secreted extracellular virulence factors.
Imperial, I. C. V. J., & Ibana, J. A. (2016). Addressing the antibiotic resistance problem with probiotics: reducing the risk of its double-edged sword effect. Frontiers in Microbiology, 7, 1983. https://doi.org/10.3389/fmicb.2016.01983
Jee, Y., Carlson, J., Rafai, E., Musonda, K., Huong, T. T. G., Daza, P., Sattayawuthipong, W., & Yoon, T. (2018). Antimicrobial resistance: a threat to global health. The Lancet Infectious Diseases, 18(9), 939–940. https://doi.org/10.1016/S1473-3099(18)30471-7
Jernigan, J. A., Hatfield, K. M., Wolford, H., Nelson, R. E., Olubajo, B., Reddy, S. C., McCarthy, N., Paul, P., McDonald, L. C., &Kallen, A. (2020). Multidrug-resistant bacterial infections in US hospitalized patients, 2012–2017. New England Journal of Medicine, 382(14), 1309–1319. https://doi.org/10.1056/NEJMoa1914433
Kadri, S. S. (2020). Key takeaways from the US CDC’s 2019 antibiotic resistance threats report for frontline providers. Critical Care Medicine. https://doi.org/10.1097/CCM.0000000000004371
Kciuk, M., Yahya, E. B., Mohamed, M. M. I., Abdulsamad, M. A., Allaq, A. A., Gielecińska, A., &Kontek, R. (2023). Insights into the Role of LncRNAs and miRNAs in glioma progression and their potential as novel therapeutic targets. Cancers, 15(13), 3298. https://doi.org/10.3390/cancers15133298
Leach, K. L., Brickner, S. J., Noe, M. C., & Miller, P. F. (2011). Linezolid, the first oxazolidinone antibacterial agent. Annals of the New York Academy of Sciences, 1222(1), 49–54. https://doi.org/10.1111/j.1749-6632.2011.05962.x
Lee, A. S., De Lencastre, H., Garau, J., Kluytmans, J., Malhotra-Kumar, S., Peschel, A., & Harbarth, S. (2018). Methicillin-resistant Staphylococcus aureus. Nature Reviews Disease Primers, 4(1), 1–23. https://doi.org/10.1038/nrdp.2018.33
Lowy, F. D. (1998). Staphylococcus aureus infections. New England Journal of Medicine, 339(8), 520–532. https://doi.org/10.1056/NEJM199808203390806
Mancuso, G., Midiri, A., Gerace, E., & Biondo, C. (2021). Bacterial antibiotic resistance: The most critical pathogens. Pathogens, 10(10), 1310. https://doi.org/10.3390/pathogens10101310
Maudsdotter, L., Imai, S., Ohniwa, R. L., Saito, S., & Morikawa, K. (2015). Staphylococcus aureus dry stress survivors have a heritable fitness advantage in subsequent dry exposure. Microbes and Infection, 17(6), 456–461. https://doi.org/10.1016/j.micinf.2015.02.004
Mazkour, S., Shekarforoush, S. S., &Basiri, S. (2019). The effects of supplementation of Bacillus subtilis and Bacillus coagulans spores on the intestinal microflora and growth performance in rat. Iranian Journal of Microbiology, 11(3), 260.
Miethke, M., Pieroni, M., Weber, T., Brönstrup, M., Hammann, P., Halby, L., Arimondo, P. B., Glaser, P., Aigle, B., & Bode, H. B. (2021). Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry, 5(10), 726–749.
Mittal, N., Goel, P., Goel, K., Sharma, R., Nath, B., Singh, S., Thangaraju, P., Mittal, R., Mithra, P., & Sahu, R. (2023). Awareness Regarding Antimicrobial Resistance and Antibiotic Prescribing Behavior among Physicians: Results from a Nationwide Cross-Sectional Survey in India. Antibiotics, 12(10), 1496. https://doi.org/10.3390/antibiotics12101496
Moo, C.-L., Yang, S.-K., Yusoff, K., Ajat, M., Thomas, W., Abushelaibi, A., Lim, S.-H.-E., & Lai, K.-S. (2020). Mechanisms of antimicrobial resistance (AMR) and alternative approaches to overcome AMR. Current Drug Discovery Technologies, 17(4), 430–447. https://doi.org/10.2174/1570163816666190304122219
Morrison, L., &Zembower, T. R. (2020). Antimicrobial resistance. Gastrointestinal Endoscopy Clinics, 30(4), 619–635.
Nagoba, B. S., & Pichare, A. (2020). Medical Microbiology and Parasitology PMFU 4th Edition-E-book. Elsevier Health Sciences.
Najmi, A., Javed, S. A., Al Bratty, M., &Alhazmi, H. A. (2022). Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules, 27(2), 349. https://doi.org/10.3390/molecules27020349
Naylor, N. R., Atun, R., Zhu, N., Kulasabanathan, K., Silva, S., Chatterjee, A., Knight, G. M., &Robotham, J. V. (2018). Estimating the burden of antimicrobial resistance: a systematic literature review. Antimicrobial Resistance & Infection Control, 7, 1–17. https://doi.org/10.1186/s13756-018-0336-y
Norazah, M. A., Rahmani, M., Khozirah, S., Ismail, H. B. M., Sukari, M. A., Ali, A. M., &Ee, G. C. I. (2010). Chemical constituents and antioxidant activity of Cinnamomum microphyllum. Pertanika Journal of Science and Technology, 18(2), 263–270.
Paray, A. A., Singh, M., Mir, M. A., & Kaur, A. (2023). Gram Staining: A Brief Review. International Journal of Research and Review, Volume 10(Issue: 9). https://www.researchgate.net/profile/Ansar-Ahmad-Paray/publication/373979703_Gram_Staining_A_Brief_Review/links/65093d9f82f01628f030ae85/Gram-Staining-A-Brief-Review.pdf
Piewngam, P., & Otto, M. (2020). Probiotics to prevent Staphylococcus aureus disease? Gut Microbes, 11(1), 94–101. https://doi.org/10.1080/19490976.2019.1591137
Ramachandran, R., Chalasani, A. G., Lal, R., & Roy, U. (2014). A broad-spectrum antimicrobial activity of Bacillus subtilis RLID 12.1. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/968487
Rogers, E. (2021). A comprehensive review over the antimicrobial resistance crisis and a proposal for future antibiotic research. [Undergraduate Honors Theses, Ball State University] http://cardinalscholar.bsu.edu/handle/20.500.14291/203384
Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., &Alqumber, M. A. A. (2023). Antimicrobial resistance: A growing serious threat for global public health. Healthcare, 11(13), 1946. https://doi.org/10.3390/healthcare11131946
Salvador-Reyes, L. A., &Luesch, H. (2015). Biological targets and mechanisms of action of natural products from marine cyanobacteria. Natural Product Reports, 32(3), 478–503. https://doi.org/10.1039/C4NP00104D
Shaw, R., Sarkar, B., Mondol, R., Sadhukhan, P., Karim, M. A., & Ghosh, K. (2021). Ocimum sanctum L., Phytochemistry and Effect on Cancer Cells. In: Chakraborty, S. B., Mitra, S., Mondal, P. K., Poddar, S., Bhaumik, A. (Eds.), Recent Advancement in Biological Sciences. Lincoln University College, Malaysia in collaboration with Lincoln Research and Publications Limited, Australia.70-72. https://doi.org/10.46977/book.2021.rabs
Shelke, Y. P., Bankar, N. J., Bandre, G. R., Hawale, D. V, &Dawande, P. (2023). An Overview of Preventive Strategies and the Role of Various Organizations in Combating Antimicrobial Resistance. Cureus, 15(9),1-9. https://doi.org/10.7759/cureus.44666
Shettar, S. S., Bagewadi, Z. K., Kolvekar, H. N., Khan, T. M. Y., & Shamsudeen, S. M. (2023). Optimization of subtilisin production from Bacillus subtilis strain ZK3 and biological and molecular characterization of synthesized subtilisin capped nanoparticles. Saudi Journal of Biological Sciences, 30(11), 1-25. https://doi.org/10.1016/j.sjbs.2023.103807
Shumba, P., MairpadyShambat, S., & Siemens, N. (2019). The role of streptococcal and staphylococcal exotoxins and proteases in human necrotizing soft tissue infections. Toxins, 11(6), 332. https://doi.org/10.3390/toxins11060332
Taneja, N., & Sharma, M. (2019). Antimicrobial resistance in the environment: The Indian scenario. The Indian Journal of Medical Research, 149(2), 119.
Theuretzbacher, U. (2023). Evaluating the innovative potential of the global antibacterial pipeline. Clinical Microbiology and Infection. https://doi.org/10.1016/j.cmi.2023.09.024
Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler Jr, V. G. (2015). Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3), 603–661. https://doi.org/10.1128/cmr.00134-14
Uddin, T. M., Chakraborty, A. J., Khusro, A., Zidan, B. M. R. M., Mitra, S., Emran, T. Bin, Dhama, K., Ripon, M. K. H., Gajdács, M., & Sahibzada, M. U. K. (2021). Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health, 14(12), 1750–1766. https://doi.org/10.1016/j.jiph.2021.10.020
Vela, A. I., Villalón, P., Sáez-Nieto, J. A., Chacón, G., Domínguez, L., & Fernández-Garayzábal, J. F. (2017). Characterization of Streptococcus pyogenes from animal clinical specimens, Spain. Emerging Infectious Diseases, 23(12), 2011. https://doi.org/10.3201/eid2312.151146
Velazquez-Meza, M. E., Galarde-López, M., Carrillo-Quiróz, B., &Alpuche-Aranda, C. M. (2022). Antimicrobial resistance: one health approach. Veterinary World, 15(3), 743. https://doi.org/10.14202/vetworld.2022.743-749
Vidya, P. (2017). Phytochemical Screening, In Vitro Antioxidant, Antibacterial and Cytotoxic Activities of Methanol Extract of L. Camara (L.) Leaves. Journal of Pharmaceutical, Chemical and Biological Sciences.
Williams, J. G., Sluyter, R., & Sanderson-Smith, M. L. (2023). Streptococcus pyogenes emm 98.1 variants activate inflammatory caspases in human neutrophils. Virulence, 14(1), 2264090. https://doi.org/10.1080/21505594.2023.2264090
Wu, Z., Chan, B., Low, J., Chu, J. J. H., Hey, H. W. D., & Tay, A. (2022). Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants. Bioactive Materials, 16, 249–270. https://doi.org/10.1016/j.bioactmat.2022.02.014
Zhang, D., Gan, R.-Y., Farha, A. K., Kim, G., Yang, Q.-Q., Shi, X.-M., Shi, C.-L., Luo, Q.-X., Xu, X.-B., & Li, H.-B. (2019). Discovery of antibacterial dietary spices that target antibiotic-resistant bacteria. Microorganisms, 7(6), 157. https://doi.org/10.3390/microorganisms7060157
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.