Spices a Healthy and Sustainable Option to Rescue from Coronavirus

  • Anasuya Sil Department of Plantation Spices Medicinal and Aromatic Crops, Faculty of Horticulture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur (741252), Nadia, West Bengal, India.
  • J. K. Hore Faculty of Horticulture and Dean Post Graduate Studies, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur Nadia, West Bengal, India-741252 https://orcid.org/0000-0002-8122-5513

Abstract

After the devastating Spanish Flu epidemics of 1918–1920, a new deadly virus strikes the world in late December 2019 and is first detected in China in early January 2020. There are 153 lakh active cases of corona virus worldwide (Worldometer data). Improving nutritional patterns is a successful strategy for combating coronavirus pandemic. The most effective natural antibiotics against viruses are spices like turmeric, ginger, black pepper and garlic.Curcumin, a hydrophobic polyphenol is an active constituent of turmeric rhizomes, has antioxidant, antiapoptotic and anti-fibrotic properties. It also has inhibitory effects on TLRs, NF-Kβ, cytokines, chemokines and bradykinin. Curcumin inhibited 3CLprotease and prevented SARS-CoV replication. It not only blocks ligand-receptor binding at entry point but blocks replication and gene expression of viruses. Ginger extracts containing compounds such as gingerol, shogoal and paradols have been found to be effective against SARS-CoV. These chemicals have anti-bacterial effect that can help to prevent nausea. They inhibit ACE2 gene receptor, in the same way that curcumin does. Piperine presents in black pepper slows the breakdown of curcumin in the liver, thus helping its absorption through intestine and increases its level in bloodstream. Garlic contains flavonoid (e.g. quercetin) and organosulfur (e.g.allicin and alliin) compounds that have immunomodulatory properties which inhibit the virus spread.


The inhibition potentials of turmeric, ginger, garlic and black pepper plant extracts are found to be healthy and sustainable option than anti-malarial drughydroxychloroquine and become very interesting towards the development of alternative medicine to fight COVID without side-effects.

Keywords: Black pepper, Coronavirus,, Garlic,, Ginger,, Turmeric.

Downloads

Download data is not yet available.

References

Abidi, A., Gupta, S., Agarwal, M., Bhalla, H. L. and Saluja, M., 2014. Evaluation of efficacy of curcumin as an add-on therapy in patients of bronchial asthma. Journal of Clinical and Diagnostic Research, 8(8), p.HC19-24.https://doi.org/10.7860/JCDR/2014/9273.4705
Abrahams, S., Haylett, W.L., Johnson, G., Carr, J.A. and Bardien, S., 2019. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: a review. Neuroscience, 406, pp.1-21.https://doi.org/10.1016/j.neuroscience.2019.02.020
Ahn, K.S., Sethi, G., Jain, A.K., Jaiswal, A.K. and Aggarwal, B.B., 2006. Genetic deletion of NADPH: quinone oxidoreductase 1 abrogates activation of nuclear factor-κB, IκBα kinase, c-Jun N-terminal kinase, Akt, p38, and p44/42 nitogen-activated protein kinases and potentiates apoptosis. Journal of Biological Chemistry, 281(29), pp.19798-19808.https://doi.org/10.1074/jbc.M601162200
Akbar, M.U., Rehman, K., Zia, K.M., Qadir, M.I., Akash, M.S.H. and Ibrahim, M., 2018. Critical review on curcumin as a therapeutic agent: from traditional herbal medicine to an ideal therapeutic agent. Critical Reviews™ in Eukaryotic Gene Expression, 28(1), pp. 17-24.https://doi.org/10.1615/CritRevEukaryotGeneExpr.2018020088
Alamdari, N., O'Neal, P. and Hasselgren, P.O., 2009. Curcumin and muscle wasting—a new role for an old drug?. Nutrition, 25(2), pp.125-129.https://doi.org/10.1016/j.nut.2008.09.002
Ban, J.O., Lee, D.H., Kim, E.J., Kang, J.W., Kim, M.S., Cho, M.C., Jeong, H.S., Kim, J.W., Yang, Y., Hong, J.T. and Yoon, D.Y., 2012. Antiobesity effects of a sulfur compound thiacremonone mediated via down‐regulation of serum triglyceride and glucose levels and lipid accumulation in the liver of db/db mice. Phytotherapy Research, 26(9), pp.1265-1271.https://doi.org/10.1002/ptr.3729
Bone. M. E., Wilkinson. D. J., J. R. Young, McNeil. J., and Charlton. S., 1990. The effect of ginger root on postoperative nausea and vomiting after major gynaecological surgery. Anaesthesia, 45, pp. 669-671. https://doi.org/10.1111/j.1365-2044.1990.tb14395.x
Boozari, M., Butler, A.E. and Sahebkar, A., 2019. Impact of curcumin on toll‐like receptors. Journal of Cellular Physiology, 234(8), pp.12471-12482.https://doi.org/10.1002/jcp.28103
Bruck, R., Aeed, H., Brazovsky, E., Noor, T. and Hershkoviz, R., 2005. Allicin, the active component of garlic, prevents immune‐mediated, concanavalin a‐induced hepatic injury in mice. Liver International, 25(3), pp.613-621.https://doi.org/10.1111/j.1478-3231.2005.01050.x
Chandrashekar, P.M. and Venkatesh, Y.P., 2012. Fructans from aged garlic extract produce a delayed immunoadjuvant response to ovalbumin antigen in BALB/c mice. Immunopharmacology and Immunotoxicology, 34(1), pp.174-180.https://doi.org/10.3109/08923973.2011.584066
Chandrashekar, P.M., Prashanth, K.V.H. and Venkatesh, Y.P., 2011. Isolation, structural elucidation and immunomodulatory activity of fructans from aged garlic extract. Phytochemistry, 72(2-3), pp.255-264.https://doi.org/10.1016/j.phytochem.2010.11.015
Cui, J., Li, F. and Shi, Z.L., 2019. Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17(3), pp.181-192.https://doi.org/10.1038/s41579-018-0118-9
Derosa, G. ,Maffioli, P. , Simental‐Mendía, L. E. , Bo, S. , and Sahebkar, A., 2016. Effect of curcumin on circulating interleukin‐6 concentrations: a systematic review and meta‐analysis of randomized controlled trials. Pharmacological Research, 111, pp. 394–404.https://doi.org/10.1016/j.phrs.2016.07.004
Dong, S., Zeng, Q., Mitchell, E.S., Xiu, J., Duan, Y., Li, C., Tiwari, J.K., Hu, Y., Cao, X. and Zhao, Z., 2012. Curcumin enhances neurogenesis and cognition in aged rats: implications for transcriptional interactions related to growth and synaptic plasticity. PloS one, 7(2), p.e31211.https://doi.org/10.1371/journal.pone.0031211
El-SaberBatiha, G., Magdy Beshbishy, A., G. Wasef, L., Elewa, Y. H., A. Al-Sagan, A., Abd El-Hack, M. E., ... & Prasad Devkota, H. (2020). Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients, 12(3), 872.https://doi.org/10.3390/nu12030872
Fan, Z., Yao, J., Li, Y., Hu, X., Shao, H., and Tian, X., 2015. Anti-inflammatory and antioxidant effects of curcumin on acute lung injury in a rodent model of intestinal ischemia reperfusion by inhibiting the pathway of NF- κB. International Journal of Clinical and Experimental Pathology, 8(4), p.3451.
Farzaei, M.H., Zobeiri, M., Parvizi, F., El-Senduny, F.F., Marmouzi, I., Coy-Barrera, E., Naseri, R., Nabavi, S.M., Rahimi, R. and Abdollahi, M., 2018. Curcumin in liver diseases: a systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients, 10(7), p.855.https://doi.org/10.3390/nu10070855
Ghandadi, M. and Sahebkar, A., 2017. Curcumin: an effective inhibitor of interleukin-6. Current Pharmaceutical Design, 23(6), pp. 921–931.
Gouda, M. M. and Bhandary, Y. P., 2019. Acute lung injury: IL-17A-mediated inflammatory pathway and its regulation by curcumin. Inflammation, 42(4), pp. 1160–1169.https://doi.org/10.1007/s10753-019-01010-4
Gouda, M.M. and Bhandary, Y.P., 2018. Curcumin down‐regulates IL‐17A mediated p53‐fibrinolytic system in bleomycin induced acute lung injury in vivo. Journal of Cellular Biochemistry, 119(9), pp.7285-7299.https://doi.org/10.1002/jcb.27026
Hamming, I., Timens, W., Bulthuis, M. L., Lely, A. T., Navis, G. and van Goor, H., 2004. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. a first step in understanding SARS pathogenesis. The Journal of Pathology, 203(2), pp. 631–637. https://doi.org/10.1002/path.1570
Hanieh, H., Narabara, K., Tanaka, Y., Gu, Z., Abe, A. and Kondo, Y., 2012. Immunomodulatory effects of Alliums and Ipomoea batata extracts on lymphocytes and macrophages functions in White Leghorn chickens: in vitro study. Animal Science Journal, 83(1), pp.68-76.https://doi.org/10.1111/j.1740-0929.2011.00918.x
He, Y., Zhou, Y., Liu, S., Kou, Z., Li, W., Farzan, M. and Jiang, S., 2004. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochemical and Biophysical Research Communications, 324(2), pp. 773–781. https://doi.org/10.1016/j.bbrc.2004.09.106
Huang, C. D., Tliba, O., Panettieri, R. A. Jr, and Amrani, Y., 2003. Bradykinin induces interleukin-6 production in human airway smooth muscle cells modulation by Th2 cytokines and dexamethasone. American Journal of Respiratory Cell and Molecular Biology, 28(3), pp. 330–338. https://doi.org/10.1165/rcmb.2002-0040OC
Huang, W.C., Chiu, W.C., Chuang, H.L., Tang, D.W., Lee, Z.M., Wei, L., Chen, F.A. and Huang, C.C., 2015. Effect of curcumin supplementation on physiological fatigue and physical performance in mice. Nutrients, 7(2), pp.905-921.https://doi.org/10.3390/nu7020905
Jafarzadeh, A., Jafarzadeh, S. and Nemati, M, 2021. Therapeutic potential of ginger against COVID-19: Is there enough evidence? Journal of Traditional Chinese Medical Sciences, 8 (4), pp. 267-279.https://doi.org/10.1016/j.jtcms.2021.10.001
Josling, P., 2001. Preventing the common cold with a garlic supplement: a double-blind, placebo-controlled survey. Advances in Therapy, 18(4), pp.189-193.https://doi.org/10.1007/BF02850113
Karunakaran, R. and Sadanandan, S. P., 2019. ‘Zingiber officinale: anti-inflammatory actions and potential usage for arthritic conditions.’ In. Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases (2nd Ed.), Academic Press,pp. 233- 244.https://doi.org/10.1016/B978-0-12-813820-5.00013-1
Karunaweera, N., Raju, R., Gyengesi, E., and Münch, G. (2015). Plant polyphenols as inhibitors of NF‐κB induced cytokine production‐a potential anti‐inflammatory treatment for Alzheimer's disease? Frontiers in Molecular Neuroscience, 8, p. 24. https://doi.org/10.3389/fnmol.2015.00024
Khubber, S., Hashemifesharaki, R., Mohammadi, M. and Gharibzahedi, S. M. T., 2020. Garlic (Allium sativum L.): a potential unique therapeutic food rich in organosulfur and flavonoid compounds to fight with COVID-19. Nutrition Journal, 19, p. 124https://doi.org/10.1186/s12937-020-00643-8
Kim M.K., Chung S. W. and Kim D. H., 2010. Modulation of age-related NF-kappa B activation by dietary zingerone via MAPK pathway. Experimental Gerontology; 45(6), pp. 419-426.https://doi.org/10.1016/j.exger.2010.03.005
Kim Y.G., Kim M.O. and Kim S, H., 2020. 6-Shogaol, an active ingredient of ginger, inhibits osteoclastogenesis and alveolar bone resorption in ligature-induced periodontitis in mice. Journal of Periodontology, 91(6), pp. 809-818.https://doi.org/10.1002/JPER.19-0228
Krishna, A. and Yadav, A., 2012. Lead compound design for TPR/COX dual inhibition. Journal of Molecular Modelling, 18(9), pp.4397-4408.https://doi.org/10.1007/s00894-012-1435-y
Lang, A., Lahav, M., Sakhnini, E., Barshack, I., Fidder, H.H., Avidan, B., Bardan, E., Hershkoviz, R., Bar-Meir, S. and Chowers, Y., 2004. Allicin inhibits spontaneous and TNF-α induced secretion of proinflammatory cytokines and chemokines from intestinal epithelial cells. Clinical Nutrition, 23(5), pp.1199-1208.https://doi.org/10.1016/j.clnu.2004.03.011
Lelli, D., Sahebkar, A., Johnston, T. P., and Pedone, C., 2017. Curcumin use in pulmonary diseases: state of the art and future perspectives. Pharmacological Research, 115, pp. 133–148. https://doi.org/10.1016/j.phrs.2016.11.017
Li, B., Yang, J., Zhao, F., Zhi, L., Wang, X., Liu, L., Bi, Z. and Zhao, Y., 2020. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clinical Research in Cardiology, 109(5), pp.531-538.https://doi.org/10.1007/s00392-020-01626-9
Li, M., Wu, Z., Niu, W., Wan, Y., Zhang, L., Shi, G. and Xi, X.E., 2014. The protective effect of curcumin against the 19 kDa Mycobacterium tuberculosis protein-induced inflammation and apoptosis in human macrophages. Molecular Medicine Reports, 10(6), pp.3261-3267. https://doi.org/10.3892/mmr.2014.2615
Lin, C.J., Chang, L., Chu, H.W., Lin, H.J., Chang, P.C., Wang, R.Y., Unnikrishnan, B., Mao, J.Y., Chen, S.Y. and Huang, C.C., 2019. High amplification of the antiviral activity of curcumin through transformation into carbon quantum dots. Small, 15(41), p.1902641.https://doi.org/10.1002/smll.201902641
Lin, G.H., Lee, Y.J., Choi, D.Y., Han, S.B., Jung, J.K., Hwang, B.Y., Moon, D.C., Kim, Y., Lee, M.K., Oh, K.W. and Jeong, H.S., 2012. Anti-amyloidogenic effect of thiacremonone through anti-inflammation in vitro and in vivo models. Journal of Alzheimer's Disease, 29(3), pp.659-676.https://doi.org/10.3233/JAD-2012-111709
Liu, Z., Huang, P., Law, S., Tian, H., Leung, W. and Xu, C., 2018. Preventive effect of curcumin against chemotherapy-induced side-effects. Frontiers in Pharmacology, 9, p.1374.
Łoczechin, A., Séron, K., Barras, A., Giovanelli, E., Belouzard, S., Chen, Y.T., Metzler-Nolte, N., Boukherroub, R., Dubuisson, J. and Szunerits, S., 2019. Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Applied Materials & Interfaces, 11(46), pp.42964-42974.https://doi.org/10.1021/acsami.9b15032
Mishra, S. and Palanivelu, K., 2008. The effect of curcumin (turmeric) on Alzheimer's disease: an overview. Annals of Indian Academy of Neurology, 11(1), p.13.https://doi.org/10.4103/0972-2327.40220
Moghadamtousi, S. Z., Abdul Kadir, H., Hassandarvish, P., Tajik, H., Abubakar, S. and Zandi, K., 2014. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Research International, 2014.https://doi.org/10.1155/2014/186864
Monteil, V., Kwon, H., Prado, P., Hagelkrüys, A., Wimmer, R.A., Stahl, M., Leopoldi, A., Garreta, E., Del Pozo, C.H., Prosper, F. and Romero, J.P., 2020. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell, 181(4), pp.905-913.https://doi.org/10.1016/j.cell.2020.04.004
Ojha, L., Tüzün, B., and Bhawsar, J., 2020. Experimental and theoretical study of effect of allium sativum extracts as corrosion inhibitor on mild steel in 1 M HCl medium. Journal of Bio- and Tribo-Corrosion. 6.
Pandey, P., Khan, F., Kumar, A., Srivastava, A. and Jha N.K., 2021. Screening of potent inhibitors against 2019 novel coronavirus (Covid-19) from Allium sativum and Allium cepa: an in silico approach. Biointerface Research in Applied Chemistry, 11(1), p. 7981–93. https://doi.org/10.33263/BRIAC111.79817993
Pang, X. F., Zhang, L. H., Bai, F., Wang, N. P., Garner, R. E., McKallip, R. J., and Zhao, Z. Q., 2015. Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression of angiotensin II AT1/AT2 receptors and ACE2 in rats. Drug Design, Development and Therapy, 9, pp. 6043–6054.https://doi.org/10.2147/DDDT.S95333
Rajagopal K, Byran G, Jupudi S, and Vadivelan R. 2020. Activity of phytochemical constituents of black pepper, ginger, and garlic against coronavirus (COVID19): an in silico approach.International Journal of Research in Health and Allied Sciences, 9(5), pp. 43–50. https://doi.org/10.4103/ijhas.IJHAS_55_20
Sahebkar, A., Cicero, A.F., Simental-Mendía, L.E., Aggarwal, B.B. and Gupta, S.C., 2016. Curcumin downregulates human tumour necrosis factor-α levels: a systematic review and meta-analysis of randomized controlled trials. Pharmacological Research, 107, pp.234-242.https://doi.org/10.1016/j.phrs.2016.03.026
San Chang, J., Wang, K. C., Yeh, C. F., Shieh, D. E., & Chiang, L. C. (2013). Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Journal of ethnopharmacology, 145(1), 146-151.https://doi.org/10.1016/j.jep.2012.10.043
Singh, S. and Aggarwal, B.B., 1995. Activation of transcription tactor NF-κB is suppressed by Curcumin (Diferuloylmethane). Journal of Biological Chemistry, 270(42), pp.24995-25000.https://doi.org/10.1074/jbc.270.42.24995
Thimmulappa, R. K., Mudnakudu-Nagaraju, K. K., Shivamallu, C., Subramaniam, K. J. T., Radhakrishnan, A., Bhojraj, S. and Kuppusamy, G., 2021. Antiviral and immunomodulatory activity of curcumin: a case for prophylactic therapy for COVID-19, Heliyon, 7 (2),P.e06350. https://doi.org/10.1016/j.heliyon.2021.e06350
Venkatesan, N., Punithavathi, D., and Babu, M., 2007. Protection from acute and chronic lung diseases by curcumin. Advances in Experimental Medicine and Biology, 595, pp. 379–405.
Wahab, N., Lajis, N., Abas, F., Othman, I. and Naidu, R., 2020. Mechanism of anti-cancer activity of curcumin on androgen-dependent and androgen-independent prostate cancer. Nutrients., 12, p. 679.https://doi.org/10.3390/nu12030679
Wang, X., An, X., Wang, X., Bao, C., Li, J., Yang, D., and Bai, C., 2018. Curcumin ameliorated ventilator‐induced lung injury in rats. Biomedicine and Pharmacotherapy, 98, pp. 754–761.https://doi.org/10.1016/j.biopha.2017.12.100
Wen, C.C., Kuo, Y.H., Jan, J.T., Liang, P.H., Wang, S.Y., Liu, H.G., Lee, C.K., Chang, S.T., Kuo, C.J., Lee, S.S. and Hou, C.C., 2007. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. Journal of Medicinal Chemistry, 50(17), pp.4087-4095.https://doi.org/10.1021/jm070295s
Yao, Q., Ye, X., Wang, L., Gu, J., Fu, T., Wang, Y., Lai, Y., Wang, Y., Wang, X., Jin, H. and Guo, Y., 2013. Protective effect of curcumin on chemotherapy-induced intestinal dysfunction. International Journal of Clinical and Experimental Pathology, 6(11), p.2342.
Statistics
470 Views | 457 Downloads
How to Cite
Sil, A., & Hore, J. (2023). Spices a Healthy and Sustainable Option to Rescue from Coronavirus. International Journal of Advancement in Life Sciences Research, 6(1), 1-12. https://doi.org/https://doi.org/10.31632/ijalsr.2023.v06i01.001